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S.1. Additional assumptions

We give the following notations similar to those in Xie and Yang (2003), which are needed to

provide assumptions assuring a sufficient conditions for the conditions (I*), (L*) and (CC) in

Xie and Yang (2003), under which the existence, weak consistency and asymptotic normality

of the GEE estimator hold:

π = sup
β,γ

λmax(R
−1
(β,γ))

λmin(R
−1
(β,γ))

, ξ = τ max
1⩽i⩽n,1⩽t⩽T

max
1⩽g⩽G

x⊤
it{H

∗
g(β

0
g)}−1xit.

In addition to the Assumption (A1)-(A5), we assume the following regularity assumptions

for the grouped GEE:

Assumption S.1:

(A6) For all i = 1, . . . , n and t = 1, . . . , T , a′(θit) is uniformly three times continuously

differentiable, a′′(θit) is uniformly bounded away from 0, and u(ηit) is uniformly four times

continuously differentiable and u′(ηit) is uniformly bounded away from 0.

(A7) For all i = 1, . . . , n, there exist positive constants, b1, b2 and b3, such that b1 ⩽

λmin((nT )
−1

∑n
i=1X

⊤
i X i) ⩽ λmax((nT )

−1
∑n

i=1 X
⊤
i X i) ⩽ b2 and λmax(T

−1X⊤
i X i) ⩽ b3.

For all i, there is q such that xitq ̸= xit′q for some t ̸= t′.

(A8) (i) π2ξ → 0 and (ii) vπξ → 0 for v = (
√
nT ∧ Tπ/min1⩽i⩽n,1⩽t⩽T{σ2(x⊤

itβ
0
g0i
)}).

(A9) (i) supβ∈BnT
max1⩽k,l⩽T |{R(α,β,γ)−R(α,β0,γ)}k.l| = Op(λ

−1/2
min (H

∗
)τ 1/2) for any α

and γ, (ii) for any γ, supβ∈BnT
max1⩽k,l⩽T |{R̂(β,γ)−R(β,γ)}k.l| = Op(n

−1/2∨λ−1/2
min (H

∗
)τ 1/2)

and max1⩽k,l⩽T |{R̂(β0,γ)−R(β0,γ)}k.l| = Op(n
−1/2), and (iii) for any α, β and γi∗ whose

only ith component differs from that of γ, max1⩽k,l⩽T |{R(α,β,γi∗) − R(α,β,γ)}kl| =

Op(1/n). (iv) for any β ∈ B and all δ > 0, max1⩽k,l⩽T |{R̂(β,γ) − R̂(β,γ0)}kl| = op(T
−δ)

for γ ∈ Γ, where Γ = {γ = (g1, . . . , gn) : n
−1

∑n
i=1 1{gi ̸= g0i } = op(T

−δ) for all δ > 0}.

Assumption (A6) requires that the marginal variance of yit is uniformly larger than 0 for

any β ∈ B and xit ∈ X for all i = 1, . . . , n and t = 1, . . . , T . The boundedness of a(k)(θit) and
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u(k)(ηit) for βg’s in a local neighborhood around β0
g is also required to ensure the asymptotic

properties of GEE estimators, which is satisfied from Assumptions (A1). Assumption (A7)

is also imposed well and ensures combined with Assumptions (A2) (i) that Hg(βg), M g(βg)

and so on are invertible when n or T is sufficiently large. Assumption (A8) is the technical

assumption similar to the assumptions in Lemma A.2 (ii), and A.3 (ii) of Xie and Yang

(2003), which ensure the sufficient conditions for the conditions (I*) and (CC) in Xie and

Yang (2003). The idea behind Assumption (A9) is similar to that of the condition (A4) in

Wang (2011), that is, it is essential to approximate Sg(βg) by S
∗
g(βg) whose moments are

easier to evaluate. For this, Assumption (A9) (i) and (ii) say that the estimated working

correlation matrix can be approximated by R(β0,γ) in a local neighborhood of β0
g’s and α.

Assumption (A9) (iii) says that each cluster is linearly additive for estimating the working

correlation matrix. Then, this is an intuitively reasonable assumption that most of the

working correlation matrix estimators satisfy. Assumption (A9) (iv) says that the estimated

working correlation matrix can be approximated by R(β,γ0) if groups are consistently

classified to their true groups on average. In Section S.4, we provide the accuracy of these

approximations under the unstructured working correlation matrix.

We use the following notations. The notation anT ≲ bnT means that anT ⩽ CbnT for all

n and T , for some constant C that does not depends on n and T . For a column vector a,

we use a⊤ to denote the transpose of a and ||a|| to denote the Euclidean norm of a. For

a matrix A, {A}kl denotes the (k, l)-element of A, λmin(A) (λmax(A)) denotes the smallest

(largest) eigenvalue of A, A⊤ denotes the transpose of A and ||A||F = {tr(A⊤A)}1/2 is the

Frobenius norm of A. We use the notation a ∨ b = max(a, b) and a ∧ b = min(a, b).

S.2. Proof of Theorem 1

First of all, we need to show the next lemma.
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Lemma 1: Suppose the Assumptions (A1)-(A9). If n/T ν → 0 for some ν > 0, it holds

that for all δ > 0,

sup
β∈BnT

1

n

n∑
i=1

1{ĝi(β) ̸= g0i } = op(T
−δ),

where ĝi(β) is obtained by (2.3) in the main text.

Proof. For any γ, γi0 is obtained by replacing only its ith element with g0i , that is γi0 =

(g1, . . . , gi−1, g
0
i , gi+1, . . . , gn). Note that, from the definition of ĝi(β), we have, for all g =

1, . . . , G,

1{ĝi(β) = g} ⩽1
{
{yi −m(X iβg)}⊤R̂

−1
(β,γ){yi −m(X iβg)}

⩽ {yi −m(X iβg0i
)}⊤R̂

−1
(β,γi0){yi −m(X iβg0i

)}
}
.

Then, we can write

1

n

n∑
i=1

1{ĝi(β) ̸= g0i } =
G∑

g=1

1

n

n∑
i=1

1{g0i ̸= g}1{ĝi(β) = g} ⩽
G∑

g=1

1

n

n∑
i=1

Zig(βg),

where

Zig(βg) =1{g0i ̸= g}1
{
{yi −m(X iβg)}⊤R̂

−1
(β,γ){yi −m(X iβg)}

⩽ {yi −m(X iβg0i
)}⊤R̂

−1
(β,γi0){yi −m(X iβg0i

)}
}
.

Similar to the proof of Lemma B.4 in Bonhomme and Manresa (2015), we start by bounding

Zig(βg) on β ∈ BnT by a quantity that does not depend on β. Denote

Wig(β) ={yi −m(X iβg)}⊤R̂
−1
(β,γ){yi −m(X iβg)}

− {yi −m(X iβg0i
)}⊤R̂

−1
(β,γi0){yi −m(X iβg0i

)},

then we have

Zig(βg) = 1{g0i ̸= g}1{Wig(β) ⩽ 0} ⩽ 1{g0i ̸= g}1{Wig(β
0) ⩽ |Wig(β

0)−Wig(β)|}.
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We have

|Wig(β
0)−Wig(β)| ⩽

∣∣∣{yi −m(X iβ
0
g0i
)}⊤R̂

−1
(β0,γi0){yi −m(X iβ

0
g0i
)}

− {yi −m(X iβg0i
)}⊤R̂

−1
(β,γi0){yi −m(X iβg0i

)}
∣∣∣

+
∣∣∣{yi −m(X iβ

0
g)}⊤R̂

−1
(β0,γ){yi −m(X iβ

0
g)}

− {yi −m(X iβg)}⊤R̂
−1
(β,γ){yi −m(X iβg)}

∣∣∣
≡K

(1)
ig (β) +K

(2)
ig (β).

We can write

K
(1)
ig (β) ⩽|{yi −m(X iβ

0
g0i
)}⊤{R̂

−1
(β0,γi0)− R̂

−1
(β,γi0)}{yi −m(X iβ

0
g0i
)}|

+ 2|{m(X iβ
0
g0i
)−m(X iβg0i

)}⊤R̂
−1
(β,γi0){yi −m(X iβ

0
g0i
)}|

+ {m(X iβ
0
g0i
)−m(X iβg0i

)}⊤R̂
−1
(β,γi0){m(X iβ

0
g0i
)−m(X iβg0i

)}

≡
3∑

j=1

Ij.

Since Ait(βg) < ∞ for all i = 1, . . . , n and t = 1, . . . , T , for I1, we can write From Assumption

(A1) , (A5) and (A9) (i), there is a constant C1, independent of n and T such that

sup
β∈BnT

I1 = C1CTλ
−1/2
min (H

∗
)τ 1/2

( 1

T

T∑
j=1

ε2it

)
.

For I2, from Taylor expansion, for β∗
g0i

between β0
g0i

and βg0i
, we have

m(X iβ
0
g0i
)−m(X iβg0i

) = ϕAi(β
∗
g0i
)∆i(β

∗
g0i
)X i(β

0
g0i
− βg0i

). (1)

Since max1⩽i⩽n max1⩽t⩽T u′(x⊤
itβg) < ∞ from Assumptions (A1) and (A6), we have

I2 ≲||R̂
−1
(β0,γi0){m(X iβ

0
g0i
)−m(X iβg0i

)}|| · ||εi||

≲λmax(R̂
−1
(β0,γi0)){(β0

g0i
− βg0i

)X⊤
i ∆i(β

∗
g0i
)A2

i (β
∗
g0i
)∆i(β

∗
g0i
)X i(β

0
g0i
− βg0i

)}1/2||εi||

≲λmax(R̂
−1
(β0,γi0))λ

1/2
max(X

⊤
i X i)||βg0i

− β0
g0i
||(ε⊤i εi)1/2.

Then, from Assumptions (A5), (A7) there is a constant C2, independent of n and T such
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that

sup
β∈BnT

I2 ⩽ C2CTλ
−1/2
min (H

∗
)τ 1/2

( 1

T

T∑
t=1

ε2it

)1/2

.

As is the case with I2, there is a constant C3, independent of n and T such that supβ∈BnT
I3 ⩽

C3C
2Tλ−1

min(H
∗
)τ . For K

(2)
ig (β), we can write

K
(2)
ig (β) ⩽|{yi −m(X iβ

0
g)}⊤{R̂

−1
(β0,γ)− R̂

−1
(β,γ)}{yi −m(X iβ

0
g)}|

+ 2|{m(X iβ
0
g)−m(X iβg)}⊤R̂

−1
(β,γ){yi −m(X iβ

0
g)}|

+ {m(X iβ
0
g)−m(X iβg)}⊤R̂

−1
(β,γ){m(X iβ

0
g)−m(X iβg)}.

From the similar argument for K
(1)
ig (β), we can bound K

(2)
ig (β) by C4(CTλ

−1/2
min (H

∗
)τ 1/2 +

C2Tλ−1
min(H

∗
)τ) for some C4 > 0. Next, we will bound Wig(β

0,γ) from below. It can be

written as

Wig(β
0,γ) ={yi −m(X iβ

0
g0i
)}⊤{R̂

−1
(β0,γ)− R̂

−1
(β0,γi0)}{yi −m(X iβ

0
g0i
)}

+ {m(X iβ
0
g0i
)−m(X iβ

0
g)}⊤R̂

−1
(β0,γ){m(X iβ

0
g0i
)−m(X iβ

0
g)}

+ 2{m(X iβ
0
g0i
)−m(X iβ

0
g)}⊤R̂

−1
(β0,γ){yi −m(X iβ

0
g0i
)}

≡
3∑

j=1

Jj.

From Assumption (A1) , (A5) and (A9) (iii),, there is a constant C5, independent of C and

T , such that J1 ⩾ −C5(T/n)(
∑T

t=1 ε
2
it/T ). For J2, we have

J2 ={m(X iβ
0
g0i
)−m(X iβ

0
g)}⊤R

−1
(β0,γ){m(X iβ

0
g0i
)−m(X iβ

0
g)}

+ {m(X iβ
0
g0i
)−m(X iβ

0
g)}⊤{R̂

−1
(β0,γ)−R

−1
(β0,γ)}{m(X iβ

0
g0i
)−m(X iβ

0
g)}

≡J21 + J22.

For J21, by using (1), we have for β∗
gi
between β0

g0i
and β0

g,

J21 = (β0
g0i
− β0

g)
⊤X⊤

i ∆i(β
∗
gi
)Ai(β

∗
gi
)R

−1
(β0,γ)Ai(β

∗
gi
)∆i(β

∗
gi
)X i(β

0
g0i
− β0

g).

From Assumption (A7), J21 is at least of order Op(T ). Then, from Assumption (A2) (ii)

there is a constant C∗
6 , independent of C and T , such that J21 ⩾ C∗

6T . From Assumptions
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(A5) and (A9) (ii), it can be shown that J22 is dominated by J21, then there is a constant

C6, independent of C and T , such that J2 ⩾ C6T . Denote ε̃i = (R0)−1/2εi. For J3, we have

J3 =2{m(X iβ
0
g0i
)−m(X iβ

0
g)}⊤R

−1
(β0,γ)A

1/2
i (β0

g0i
)(R0)1/2ε̃i

+ 2{m(X iβ
0
g0i
)−m(X iβ

0
g)}⊤{R̂

−1
(β0,γ)−R

−1
(β0,γ)}{yi −m(X iβ

0
g0i
)}

≡J31 + J32.

From Assumption (A9) (ii), J32 is dominated by J31. Let UΛU⊤ be the eigendecompo-

sition of R
−1/2

(β0,γ)A
1/2
i (β0

g0i
)(R0)1/2, where Λ = diag(λ1, . . . , λT ) for λ1 ⩾, . . . , λT is a

diagonal matrix formed from the eigenvalues and U is the corresponding eigenvectors of

R
−1/2

(β0,γ)A
1/2
i (β0

g0i
)(R0)1/2. Then we can write

J3 ={m∗(X iβ
0
g0i
)−m∗(X iβ

0
g)}⊤Λε̃∗i (1 + op(1))

=C7

T∑
t=1

λt{m∗(x⊤
itβ

0
g0i
)−m∗(x⊤

itβ
0
g)}ε̃∗it(1 + op(1)),

for m∗(X iβg) = UR
−1/2

(β0,γ)m(X iβg) and ε̃∗i = Uε̃i. Combined with the above results,

we thus obtain

sup
β∈BnT

Zig(βg)

⩽1{g0i ̸= g}

× 1
{
− C5

T

n

( 1

T

T∑
t=1

ε2it

)
+ C6T + C7

T∑
t=1

λt{m∗(x⊤
itβ

0
g0i
)−m∗(x⊤

itβ
0
g)}ε̃∗it(1 + op(1))

⩽ C1CTλ
−1/2
min (H

∗
)τ 1/2

( 1

T

T∑
t=1

ε2it

)
+ C2CTλ

−1/2
min (H

∗
)τ 1/2

( 1

T

T∑
t=1

ε2it

)1/2

+ C3C
2Tλ−1

min(H
∗
)τ + C4(CTλ

−1/2
min (H

∗
)τ 1/2 + C2Tλ−1

min(H
∗
)τ)

}
.

Since the right-hand side of the above inequality does not depend on βg for g = 1, . . . , G,

we can denote it as Z̃ig. As a result, we have

sup
β∈BnT

1

n

n∑
i=1

1{ĝi(β) ̸= g0i } ⩽ 1

n

n∑
i=1

G∑
g=1

Z̃ig.

Using standard probability algebra, we have for all g and M in Assumption (A4) and for
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any 0 < c < 1,

P (Z̃ig = 1)

⩽P
(
− C5

1

n

( 1

T

T∑
t=1

ε2it

)
+ C6 +

1

T
C7

T∑
t=1

λt{m∗(x⊤
itβ

0
g0i
)−m∗(x⊤

itβ
0
g)}ε̃∗it(1 + op(1))

⩽ C1Cλ
−1/2
min (H

∗
)τ 1/2

( 1

T

T∑
t=1

ε2it

)
+ C2Cλ

−1/2
min (H

∗
)τ 1/2

( 1

T

T∑
t=1

ε2it

)1/2

+ C3C
2λ−1

min(H
∗
)τ + C4(Cλ

−1/2
min (H

∗
)τ 1/2 + C2λ−1

min(H
∗
)τ)

)
⩽P

( 1

T

T∑
t=1

ε2it ⩾ n1−cM
)
+ P

( 1

T

T∑
t=1

ε2it ⩾ λ
1/2
min(H

∗
)τ−1/2M

)
+ P

( 1

T

T∑
t=1

ε2it ⩾ λmin(H
∗
)τ−1M

)
+ P

( 1

T
C7

T∑
t=1

λt{m∗(x⊤
itβ

0
g0i
)−m∗(x⊤

itβ
0
g)}ε̃∗it(1 + op(1))

⩽ C5n
−cM − C6 + C1CM + C2C

√
M

+ C3C
2λ−1

min(H
∗
)τ + C4(Cλ

−1/2
min (H

∗
)τ 1/2 + C2λ−1

min(H
∗
)τ)

)
.

From Markov’s inequality, we have for any δ > 0,

P
( 1

T

T∑
t=1

ε2it ⩾ n1−cM
)
⩽ exp

(
− n1−cM

)
E
[
exp

( 1

T

T∑
t=1

ε2it

)]
.

Since E[T−1
∑T

t=1 ε
2
it] = 1 and Var(T−1

∑T
t=1 ε

2
it) < ∞ from Assumption (A4), we have

T−1
∑T

t=1 ε
2
it = Op(1). Then, we have P (T−1

∑T
t=1 ε

2
it ⩾ n1−cM) = op(T

−δ) for any δ > 0.

Similarly, we have

P
( 1

T

T∑
t=1

ε2it ⩾ λ
1/2
min(H

∗
)τ−1/2M

)
⩽ exp

(
− λ

1/2
min(H

∗
)τ−1/2M

)
E
[
exp

( 1

T

T∑
t=1

ε2it

)]
= op(T

−δ),

where the second inequality follows from Assumption (A3). Similarly, we have

P
( 1

T

T∑
t=1

ε2it ⩾ λmin(H
∗
)τ−1M

)
= op(T

−δ).
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For the last probability,

P
( 1

T
C7

T∑
t=1

λt{m∗(x⊤
itβ

0
g0i
)−m∗(x⊤

itβ
0
g)}ε̃∗it(1 + op(1))

⩽ C5n
−cM − C6 + C1CM + C2C

√
M

+ C3C
2λ−1

min(H
∗
)τ + C4(Cλ

−1/2
min (H

∗
)τ 1/2 + C2λ−1

min(H
∗
)τ)

)
,

the right-hand side of the inequality in the probability, the first and the last two terms are

dominated by other terms as n, T → ∞. Then, by taking a sufficiently small C, for η > 0,

the probability can be bounded above by

P
(∣∣∣C7

T∑
t=1

λt{m∗(x⊤
itβ

0
g0i
)−m∗(x⊤

itβ
0
g)}ε̃∗it

∣∣∣ ⩾ Tη
)
.

Moreover, it is noted that m∗(x⊤
itβ

0
g0i
) − m∗(x⊤

itβ
0
g) = Op(1) for all i and t, and λt’s can

be bounded by the eigenvalues of R
−1/2

(β0,γ)(R0)1/2 multiplied by a constant. Then, the

left-hand side of the inequality is a linear combination of ε̃∗it, and its expectation is 0, and

the order of its variance is at most O(T + τ). Since ε̃∗it for t = 1, . . . , T are uncorrelated,

we can use Theorem 6.2 in Rio (2000), in which the second term of the right-hand side of

the equation (6.5) vanishes in this case due to the uncorrelatedness of ε̃it’s. Thus, by using

the consequence of Theorem 6.2 in Rio (2000) for λ = Tη/4, r = T 1/2 and s2n = T + τ , the

probability above is bounded above by 4{1 + T 2η2/(16T 1/2(T + τ)))}−T 1/2/2 = o(T−δ) for

any δ > 0. This ends the proof.

Similar to Wang (2011), in order to prove the consistency it is essential to approximate

Sg(βg),Hg(βg) and so on by S
∗
g(βg) andH

∗
g(βg) whose moments are easier to evaluate. The

following lemmas 2 - 8 establish the accuracy of these approximations, which play important

roles in deriving the asymptotic normality.

Lemma 2: Suppose the Assumptions (A1)-(A9). If n/T ν → 0 for some ν > 0, it holds
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that, for all g = 1, . . . , G and all δ > 0,

sup
β∈BnT ,γ∈Γ

||{H∗
g(β

0
g)}−1/2{Sg(βg)− S∗

g(βg)}|| = Op(λ
−1/2
min (H

∗
)nT )op(T

−δ),

sup
β∈BnT ,γ∈Γ

||{H∗
g(β

0
g)}−1/2{Sg(βg)− S

∗
g(βg)}|| = Op(λ

−1/2
min (H

∗
)nT )op(T

−δ).

Proof. We will show the second part of the lemma. Form Assumption (A9) (ii), the first

part of the lemma can be shown similarly by replacing R(β,γ) and R(β,γ0) with R̂(β,γ)

and R̂(β,γ0) respectively. It can be written as

Sg(βg)− S
∗
g(βg)

=
n∑

i=1

1{gi = g}X⊤
i ∆i(βg)A

1/2
i (βg)R

−1
(β,γ)A

−1/2
i (βg){yi −m(X iβg)}

−
n∑

i=1

1{g0i = g}X⊤
i ∆i(βg)A

1/2
i (βg)R

−1
(β,γ0)A

−1/2
i (βg){yi −m(X iβg)}

=
n∑

i=1

1{g0i = g}X⊤
i ∆i(βg)A

1/2
i (βg){R

−1
(β,γ)−R

−1
(β,γ0)}A−1/2

i (βg){yi −m(X iβg)}

+
n∑

i=1

(1{gi = g} − 1{g0i = g})X⊤
i ∆i(βg)A

1/2
i (βg)R

−1
(β,γ)A

−1/2
i (βg){yi −m(X iβg)}

≡I1 + I2.

For I1, we have

I1 =
∑
i:g0i =g

T∑
t1,t2=1

{R−1
(β,γ)−R

−1
(β,γ0)}t1,t2A

1/2
it1

(βg)A
−1/2
it2

(βg){yit2 −m(x⊤
it2
βg)}xit1

=
T∑

t1=1

T∑
t2=1

{R−1
(β,γ)−R

−1
(β,γ0)}t1,t2

×
[ ∑
i:g0i =g

A
1/2
it1

(βg)A
−1/2
it2

(βg){A
1/2
it2

(β0
g)εit2 +m(x⊤

it2
β0

g)−m(x⊤
it2
βg)}xit1

]
.

It is noted that we have

E
[∣∣∣∣∣∣ ∑

i:g0i =g

A
1/2
it1

(βg)A
−1/2
it2

(βg)A
1/2
it2

(β0
g)εit2xit1

∣∣∣∣∣∣2] ≲ ∑
i:g0i =g

x⊤
it1
xit1 = O(n),
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and

sup
β∈BnT

∣∣∣∣∣∣ ∑
i:g0i =g

A
1/2
it1

(βg)A
−1/2
it2

(βg){m(x⊤
it2
β0

g)−m(x⊤
it2
βg)}xit1

∣∣∣∣∣∣2
⩽ sup

β∈BnT

∑
i:g0i =g

∣∣∣∣∣∣A1/2
it1

(βg)A
−1/2
it2

(βg)ṁ({x⊤
it2
βg}∗)x⊤

it2
(β0

g − βg)xit1

∣∣∣∣∣∣2
≲ sup

β∈BnT

∑
i:g0i =g

(β0
g − βg)xit2x

⊤
it2
(β0

g − βg)x
⊤
it1
xit1

=Op(nλ
−1
min(H

∗
)τ).

It is noted that max1⩽,k,l⩽T |{R̂
−1
(β,γ0)− R̂

−1
(β,γ)}kl| = op(T

−δ) for γ ∈ Γ from Assump-

tion (A9) (iv). Then, we have supβ∈BnT
||I1|| = Op(n

1/2T 2)op(T
−δ). For I2, we have from the

triangle inequality

||I2||2 ⩽
n∑

i=1

1{gi ̸= g0i }
n∑

i=1

||X⊤
i ∆i(βg)A

1/2
i (βg)R

−1
(β,γ)A

−1/2
i (βg){yi −m(X iβg)}||2

Since we have

||X⊤
i ∆i(βg)A

1/2
i (βg)R

−1
(β,γ)A

−1/2
i (βg){yi −m(X iβg)}||2

≲λmax(X
⊤
i X i)||yi −m(X iβg)||2 = Op(T

2),

we have supγ∈Γ ||I2|| = Op(nT )op(T
−δ), which ends the proof.

Lemma 3: Suppose the Assumptions (A1)-(A9). It holds that, for all g = 1, . . . , G,

sup
β∈BnT

∥|{H∗
g(β

0
g)}−1/2{Sg(βg)− Sg(βg)}|| = Op(λ

−1/2
min (H

∗
)T 2).

Proof. From Lemma 2, it is enough to show that

||{H∗
g(β

0
g)}−1/2{S∗

g(β
0
g)− S

∗
g(β

0
g)}|| = Op(λ

−1/2
min (H

∗
)T 2).

The proof is almost the same as that of Lemma 3.1 in Wang (2011). Let Q = {qj1,j2}1⩽j1,j2⩽T
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denote the matrix R̂
−1
(β,γ0)−R

−1
(β,γ0). Then,

S∗
g(βg)− S

∗
g(βg)

=
n∑

i=1

T∑
t1=1

T∑
t2=1

{R̂
−1
(β,γ0)−R

−1
(β,γ0)}t1,t2A

1/2
it1

(βg)A
−1/2
it2

(βg){yit2 −m(x⊤
it2
βg)}xit1

=
T∑

t1=1

T∑
t2=1

{R̂
−1
(β,γ0)−R

−1
(β,γ0)}t1,t2

×
[ n∑

i=1

A
1/2
it1

(βg)A
−1/2
it2

(βg){A
1/2
it2

(β0
g)εit2 +m(x⊤

it2
β0

g)−m(x⊤
it2
βg)}xit1

]
Note that

E
[∣∣∣∣∣∣ n∑

i=1

A
1/2
it1

(βg)A
−1/2
it2

(βg)A
1/2
it2

(β0
g)εit2xit1

∣∣∣∣∣∣2] ≲ n∑
i=1

x⊤
it1
xit1 = O(n),

and

sup
β∈BnT

∣∣∣∣∣∣ n∑
i=1

A
1/2
it1

(βg)A
−1/2
it2

(βg){m(x⊤
it2
β0

g)−m(x⊤
it2
βg)}xit1

∣∣∣∣∣∣2
= sup

β∈BnT

n∑
i=1

∣∣∣∣∣∣A1/2
it1

(βg)A
−1/2
it2

(βg)ṁ({x⊤
it2
βg}∗)x⊤

it2
(β0

g − βg)xit1

∣∣∣∣∣∣2
≲ sup

β∈BnT

n∑
i=1

(β0
g − βg)

⊤xit2x
⊤
it2
(β0

g − βg)x
⊤
it1
xit1

=C2λ−1
min(H

∗
)τOp(n).

Similar to the proof of Lemma 2, we have max1⩽k,l⩽T{R̂
−1
(β,γ0)−R

−1
(β,γ0)}kl = Op(n

−1/2)

from Assumption (A9) (ii). Then, we have supβ∈BnT
||S∗

g(βg) − S
∗
g(βg)|| = Op(T

2), which

proves the lemma.

The following Lemma is from Remark 1 in Xie and Yang (2003).

Lemma 4: It holds that, for all i = 1, . . . , n,

D i(βg) = H i(βg) +Bi(βg) + E i(βg),
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for Bi(βg) = B
[1]

i (βg) +B
[2]

i (βg) and E i(βg) = E [1]

i (βg) + E [2]

i (βg), where

B
[1]

i (βg) = X⊤
i diag[R

−1
A

−1/2
i (βg){m(X iβ

0
g0i
)−m(X iβg)}]G

[1]
i (βg)X i,

B
[2]

i (βgi
) = X⊤

i ∆i(βg)A
1/2
i (βg)R

−1
diag[m(X iβ

0
g0i
)−m(X iβg)]G

[2]
i (βg)X i,

E [1]

i (βg) = X⊤
i diag[R

−1
A

−1/2
i (βg)A

1/2
i (β0

g0i
)εi]G

[1]
i (βg)X i,

and

E [2]

i (βgi
) = X⊤

i ∆i(βg)A
1/2
i (βg)R

−1
diag[A

1/2
i (β0

g0i
)εi]G

[2]
i (βg)X i.

Here, G
[ℓ]
i (βg) = diag(q′

[ℓ]
it (βg), . . . , q

′[ℓ]
it (βg), for ℓ = 1, 2, where

q
[1]
it (βg) = [a′′(θit]

−1/2m′(ηit), q
[2]
it (βg) = [a′′(θit)]

−1/2,

and

q′
[1]
it (βg) = −1

2

a(3)(θit)

[a′′(θit)]5/2
{m′(ηit)}2 +

m′′(ηit)

[a′′(θit)]1/2
, q′

[2]
it (βgi

) = −1

2

a(3)(θit)

[a′′(θit)]5/2
m′(ηit).

Lemma 5: Suppose the Assumptions (A1)-(A9). It holds that, for any λ ∈ Rp and g =

1, . . . , G,

sup
β∈BnT

sup
||λ||=1

|λ⊤[D∗
g(βg)− D

∗
g(βg)]λ| = Op({λ−1/2

min (H
∗
)τ 1/2 ∨ n−1/2}T 2n).

Proof. By Lemma 4, it is sufficient to prove the following three results:

sup
β∈BnT

sup
||λ||=1

|λ⊤[H∗
g(βg)−H

∗
g(βg)]λ| = Op({λ−1/2

min (H
∗
)τ 1/2 ∨ n−1/2}T 2n),

sup
β∈BnT

sup
||λ||=1

|λ⊤[B∗
g(βg)−B

∗
g(βg)]λ| = Op({λ−1/2

min (H
∗
)τ 1/2 ∨ n−1/2}T 2n),

and

sup
β∈BnT

sup
||λ||=1

|λ⊤[E∗
g(βg)− E∗

g(βg)]λ| = Op({λ−1/2
min (H

∗
)τ 1/2 ∨ n−1/2}T 2n).
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We have

|λ⊤[H∗
g(βg)−H

∗
g(βg)]λ| =

∣∣∣ ∑
i:g0i =g

λ⊤X⊤
i ∆i(β

0
g)A

1/2
i (β0

g)R̂
−1
(β,γ){R̂(β,γ)−R(β,γ)}

×R
−1
(β,γ)A

1/2
i (β0

g)∆i(β
0
g)X iλ

∣∣∣
≲||R̂(β,γ)−R(β,γ)||Fλmax

( ∑
i:g0i =g

X⊤
i X i

)
,

which implies that supβ∈BnT
sup||λ||=1 |λ⊤[H∗

g(βg)−H
∗
g(βg)]λ| = Op({λ−1/2

min (H
∗
)τ 1/2∨n−1/2}T 2n)

from Assumptions (A2) (i), (A7) and (A9) (ii). Next, we will verify

sup
β∈BnT

sup
||λ||=1

|λ⊤[B[1]∗
g (βg)−B

[1]∗
g (βg)]λ| = Op({λ−1/2

min (H
∗
)τ 1/2 ∨ n−1/2}T 2n),

and

sup
β∈BnT

sup
||λ||=1

|λ⊤[B[2]∗
g (βg)−B

[2]∗
g (βg)]λ| = Op({λ−1/2

min (H
∗
)τ 1/2 ∨ n−1/2}T 2n).

We have from Cauchy-Schwarz inequality

|λ⊤[B[1]∗
g (βg)−B

[1]∗
g (βg)]λ|

=
∣∣∣ ∑
i:g0i =g

λ⊤X⊤
i diag[{R̂

−1
(β,γ)−R

−1
(β,γ)}A−1/2

i (βg)

× {m(X iβ
0
g)−m(X iβg)}]G

[1]
i (βg)X iλ

∣∣∣
=
∣∣∣ ∑
i:g0i =k

λ⊤X⊤
i G

[1]
i (βg)diag[X iλ]{R̂

−1
(β,γ)−R

−1
(β,γ)}A−1/2

i (βg)

× {m(X iβ
0
g)−m(X iβg)}

∣∣∣
⩽

∑
i:g0i =g

||diag[X iλ]G
[1]
i (βg)X iλ||

× ||{R̂
−1
(β,γ)−R

−1
(β,γ)}A−1/2

i (βg){m(X iβ
0
g)−m(X iβg)}||.

We have

λ⊤X⊤
i G

[1]
i (βg)diag

2[X iλ]G
[1]
i (βg)X iλ ⩽ max

1⩽t⩽T
|x⊤

itλ|2 max
1⩽t⩽T

|q′[1]it (βg)|2λmax(X
⊤
i X i),
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and, by using (1), we have for β∗
g between β0

g and βg,

{m(X iβ
0
g)−m(X iβg)}⊤A

−1/2
i (βg){R̂

−1
(β,γ)−R

−1
(β,γ)}2

×A
−1/2
i (βg){m(X iβ

0
g)−m(X iβg)}

=(β0
g − βg)

⊤X⊤
i ∆(β∗

g)Ai(β
∗
g)A

−1/2
i (βg)[R̂

−1
(β,γ){R−1

(β,γ)− R̂
−1
(β,γ)}

×R
−1
(β,γ)]2A

−1/2
i (βg)Ai(β

∗
g)∆(β∗

g)X i(β
0
g − βg)

≲||R̂(β,γ)−R(β,γ)||2Fλmax(X
⊤
i X i)λ

−1
min(H

∗
)||{H∗

g(β
0
g)}1/2(βg − β0

g)||.

Then, from Assumptions (A7) and (A9) (ii), we have

sup
βk∈BnT

sup
||λ||=1

|λ⊤[B
[1]∗
nk (βk)−B

[1]∗
nk (βk)]λ|

=nOp(T
1/2)Op({Tλ−1/2

min (H
∗
)τ 1/2 ∨ Tn−1/2})Op(T

1/2)λ
−1/2
min (H

∗
)τ 1/2

=Op({λ−1/2
min (H

∗
)τ 1/2 ∨ n−1/2}T 2n)λ

−1/2
min (H

∗
)τ 1/2,

which proves supβ∈BnT
sup||λ||=1 |λ⊤[B[1]∗

g (βg)−B
[1]∗
g (βg)]λ| = Op({λ−1/2

min (H
∗
)τ 1/2∨n−1/2}T 2n)

since λ−1
min(H

∗
)τ → 0. Moreover, we have from Cauchy-Schwarz inequality

|λ⊤[B[2]∗
g (βg)−B

[2]∗
g (βg)]λ|

=
∣∣∣ ∑
i:g0i =g

λ⊤X⊤
i ∆i(βg)A

1/2
i (βg){R̂

−1
(β,γ)−R

−1
(β,γ)}

× diag[m(X iβ
0
g)−m(X iβg)]G

[2]
i (βg)X iλ

∣∣∣
=
∣∣∣ ∑
i:g0i =g

λ⊤X⊤
i ∆i(βg)A

1/2
i (βg){R̂

−1
(β,γ)−R

−1
(β,γ)}G[2]

i (βg)

× diag[X iλ]{m(X iβ
0
g)−m(X iβg)}

∣∣∣
⩽

∑
i:g0i =g

||diag[X iλ]G
[2]
i (βg){R̂(β,γ)−R(β,γ)}A1/2

i (βg)∆i(βg)X iλ||

× ||m(X iβ
0
g)−m(X iβg)||.
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We have

λ⊤X⊤
i ∆i(βg)A

1/2
i (βg){R̂

−1
(β,γ)−R

−1
(β,γ)}G[2]

i (βg)diag
2[X iλ]G

[2]
i (βg)

× {R̂
−1
(β,γ)−R

−1
(β,γ)}A1/2

i (βg)∆i(βg)X iλ

≲ max
1⩽t⩽T

|x⊤
itλ|2 max

1⩽t⩽T
|q′[2]it (βg)|2||R̂

−1
(β,γ)−R

−1
(β,γ)||2Fλmax(X

⊤
i X i),

and for β∗
g between βg and β0

g, we have

||m(X iβ
0
g)−m(X iβg)||2 =(β0

g − βg)
⊤X⊤

i Ai(β
∗
g)∆

2
i (β

∗
g)Ai(β

∗
g)X i(β

0
g − βg)

≲λmax(X
⊤
i X i)λ

−1
min(H

∗
)||{H∗

g(β
0
g)}1/2(βg − β0

g)||.

Then, from Assumption (A7) and (A9) (ii) we have

sup
β∈BnT

sup
||λ||=1

|λ⊤[B[2]∗
g (βg)−B

[2]∗
g (βg)]λ|

=nOp({Tλ−1/2
min (H

∗
)τ 1/2 ∨ Tn−1/2})Op(T

1/2)Op(T
1/2)λ

−1/2
min (H

∗
)τ 1/2

=Op({λ−1/2
min (H

∗
)τ 1/2 ∨ n−1/2}T 2n)λ−1/2

max (H
∗
)τ 1/2,

which proves supβ∈BnT
sup||λ||=1 |λ⊤[B[2]∗

g (βg)−B
[2]∗
g (βg)]λ| = Op({λ−1/2

min (H
∗
)τ 1/2∨n−1/2}T 2n)

since λ−1
min(H

∗
)τ → 0. Lastly, we will verify

sup
β∈BnT

sup
||λ||=1

|λ⊤[E [1]∗
g (βg)− E [1]∗

g (βg)]λ| = Op({λ−1/2
min (H

∗
)τ 1/2 ∨ n−1/2}T 2n),

and

sup
β∈BnT

sup
||λ||=1

|λ⊤[E [2]∗
g (βg)− E [2]∗

g (βg)]λ| = Op({λ−1/2
min (H

∗
)τ 1/2 ∨ n−1/2}T 2n).

We have from Cauchy-Schwarz inequality

|λ⊤[E [1]∗
g (βg)− E [1]∗

g (βg)]λ|

=
∣∣∣ ∑
i:g0i =g

λ⊤X⊤
i G

[1]
i (βg)diag[X iλ]{R̂

−1
(β,γ)−R

−1
(β,γ)}A−1/2

i (βg)A
1/2
i (β0

g)εi

∣∣∣
⩽

∑
i:g0i =g

||G[1]
i (βg)diag[X iλ]X iλ|| · ||{R̂

−1
(β,γ)−R

−1
(β,γ)}A−1/2

i (βg)A
1/2
i (β0

g)εi||

≲
∑
i:g0i =g

max
1⩽j⩽T

{||x⊤
itλ||}λ1/2

max(X
⊤
i X i)||R̂(β,γ)−R(β,γ)||F ||εi||.



16 Biometrics, 000 0000

Then, from Assumption (A7) and (A9) (ii) we have we have

sup
β∈BnT

sup
||λ||=1

|λ⊤[E [1]
nk(βk)− E [1]∗

(βk)]λ|

=nOp(T
1/2)Op({Tλ−1/2

min (H
∗
)τ 1/2 ∨ Tn−1/2})Op(T

1/2)

=Op({λ−1/2
min (H

∗
)τ 1/2 ∨ n−1/2}T 2n),

which proves supβ∈BnT
sup||λ||=1 |λ⊤[E [1]∗

g (βg)−E [1]∗
g (βg)]λ| = Op({λ−1/2

min (H
∗
)τ 1/2∨n−1/2}T 2n).

Moreover, we have from Cauchy-Schwarz inequality

|λ⊤[E [2]∗
g (βg)− E [2]∗

g (βg)]λ|

=
∣∣∣ ∑
i:g0i =g

λ⊤X⊤
i ∆i(βg)A

1/2
i (βg){R̂

−1
(β,γ)−R

−1
(β,γ)}diag[A1/2

i (β0
g0i
)εi]G

[2]
i (βg)X iλ

∣∣∣
⩽
( ∑

i:g0i =g

||{R̂
−1
(β,γ)−R

−1
(β,γ)}A1/2

i (βg)∆i(βg)X iλ||2
)1/2

×
( ∑

i:g0i =g

||diag[A1/2
i (β0

g0i
)εi]G

[2]
i (βg)X iλ||2

)1/2

≲||R̂(β,γ)−R(β,γ)||F max
1⩽j⩽T

{|A1/2
it (β0

g0i
)εit|}λmax

( ∑
i:g0i =g

X⊤
i X i

)
.

Then, from Assumption (A7) and (A9) (ii) we have

sup
β∈BnT

sup
||λ||=1

|λ⊤[E [2]∗
g (βg)− E [2]∗

g (βg)]λ|

=Op({Tλ−1/2
min (H

∗
)τ 1/2 ∨ Tn−1/2})Op(nT )

=Op({λ−1/2
min (H

∗
)τ 1/2 ∨ n−1/2}T 2n),

which proves supβ∈BnT
sup||λ||=1 |λ⊤[E [2]∗

g (βg)−E [2]∗
g (βg)]λ| = Op({λ−1/2

min (H
∗
)τ 1/2∨n−1/2}T 2n).

The following three lemmas are from Lemma A.1. (ii), Lemma A.2. (ii), Lemma A.3. (ii)

in Xie and Yang (2003), respectively. These three lemmas are hold under the assumption

(AH) in Xie and Yang (2003), which is satisfied in our problem from Assumptions (A1).

Lemma 6: Suppose Assumption (A1) and (A8) (i) hold. It holds that, for any λ ∈ Rp
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and g = 1, . . . , G,

sup
β∈BnT

sup
||λ||=1

|λ⊤{H∗
g(β

0
g)}−1/2H

∗
g(βg){H

∗
g(β

0
g)}−1/2λ− 1| = op(1).

Lemma 7: Suppose Assumptions (A1) and (A8) (i) hold. It holds that, for any λ ∈ Rp

and g = 1, . . . , G,

sup
β∈BnT

sup
||λ||=1

|λ⊤{H∗
g(β

0
g)}−1/2B

∗
g(βg){H

∗
g(β

0
g)}−1/2λ| = op(1).

Lemma 8: Suppose Assumptions (A1) and (A8) (ii) hold. It holds that, for any λ ∈ Rp

and g = 1, . . . , G,

sup
βg∈BnT

sup
||λ||=1

|λ⊤{H∗
g(β

0
g)}−1/2E∗

g(βg){H
∗
g(β

0
g)}−1/2λ| = op(1).

The proof is based on that of Theorem 3.6 in Wang (2011). We will verify the following

condition: for any ϵ > 0, there exists a constant C > 0 such that for all n and T sufficiently

large,

P
(

sup
β∈BnT ,γ∈Γ

(βg − β0
g)

⊤Sg(βg) < 0
)
⩾ 1− ϵ,

where BnT = {β : maxg=1,...,G ||{H∗
g(β

0
g)}1/2(βg−β0

g)|| = Cτ 1/2} and Γ = {γ = (g1, . . . , gn) :

n−1
∑n

i=1 1{gi ̸= g0i } = op(T
−δ) for all δ > 0}. This is a sufficient condition to ensure the

existence of a sequence of roots β̂g of the equation Sg(βg) = 0 for g = 1, . . . , G such that

β̂ ∈ BnT for γ ∈ Γ. This is because from Assumption (A5) and (A7), we can estimate each

βi consistently by solving Si(βi) = 0, and then, P (γ /∈ Γ) = op(1) from Lemma 1.

From Taylor expansion, we can write

(βg − β0
g)

⊤Sg(βg) =(βg − β0
g)

⊤Sg(β
0
g)− (βg − β0

g)
⊤

n∑
i=1

1{gi = g}D i(β
∗
gi
)(βgi

− β0
g)

≡I1 + I2,

where β∗
gi
lies between βgi

and β0
g for i = 1, . . . , n. Next, we write

I1 = (βg − β0
g)

⊤S
∗
g(β

0
g) + (βg − β0

g)
⊤{Sg(β

0
g)− S

∗
g(β

0
g)} ≡ I11 + I12.
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For ℓ = 1, . . . , p, denote eℓ ∈ Rp with ℓth element equal to 1 and the others equal to 0. Then,

we have

E[{e⊤
ℓ {H

∗
g(β

0
g)}−1/2S

∗
g(β

0
g)}2]

=e⊤
ℓ {H

∗
g(β

0
g)}−1/2

n∑
i=1

1{g0i = g}X⊤
i ∆i(β

0
g)A

1/2
i (β0

g)R
−1
(β0,γ0)R0R

−1
(β0,γ0)

×A
1/2
i (β0

g)∆i(β
0
g)X i{H

∗
g(β

0
g)}−1/2eℓ

⩽λmax(R
0R

−1
(β0,γ0)).

Thus, we can bound |I11| by

sup
β∈BnT

|I11| ⩽ ||{H∗
g(β

0
g)}1/2(βg − β0

g)|| · ||{H
∗
g(β

0
g)}−1/2S

∗
g(β

0
g)|| ⩽ Cτ.

From the Lemma 2 and 3, we have

sup
β∈BnT

|I12| ⩽||{H∗
g(β

0
g)}1/2(βg − β0

g)|| · ||{H
∗
g(β

0
g)}−1/2{Sg(β

0
g)− S

∗
g(β

0
g)}||

⩽τ 1/2Op(λ
−1/2
min (H

∗
)T 2).

Since τ−1/2λ
−1/2
min (H

∗
)T 2 → 0 from Assumption (A3), supβ∈BnT

|I12| = op(τ). Hence, we have

supβ∈BnT
|I1| ⩽ Cτ . In what follows, we will evaluate I2. It can be written as

I2 =− (βg − β0
g)

⊤
n∑

i=1

1{gi = g}D i(β
∗
gi
)(βgi

− β0
g)

− (βg − β0
g)

⊤
n∑

i=1

1{gi = g}{D i(β
∗
gi
)− D i(β

∗
gi
)}(βgi

− β0
g)

≡I21 + I22.

For g0i = gi = g, β∗
gi
lies between βg and β0

g, and then we write β∗
gi
≡ β∗

g for such i. Hence,

we can write

I21 =− (βg − β0
g)

⊤D
∗
g(β

∗
g)(βg − β0

g)

− (βg − β0
g)

⊤
n∑

i=1

(1{gi = g} − 1{g0i = g})D i(β
∗
gi
)(βgi

− β0
g)

≡I211 + I212.
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For I211, we write

I211 =− (βg − β0
g)

⊤H
∗
g(β

∗
g)(βg − β0

g)− (βg − β0
g)

⊤{D∗
g(β

∗
g)−H

∗
g(β

∗
g)}(βg − β0

g)

≡I2111 + I2112.

For I2111, we can write

I2111 =− (βg − β0
g)

⊤H
∗
g(β

0
g)(βg − β0

g)

− (βg − β0
g)

⊤{H∗
g(β

0
g)}1/2

[
{H∗

g(β
0
g)}−1/2H

∗
g(β

∗
g){H

∗
g(β

0
g)}−1/2 − Ip

]
× {H∗

g(β
0
g)}1/2(βg − β0

g)

≡I21111 + I21112.

For β ∈ BnT , we have I21111 = −C2τ . Moreover, for g0i = gi = g, β∗
gi
≡ β∗

g is contained in a

local neighborhood of β0
g. Then, for I21112, we have from Lemma 6,

|I21112| ⩽ sup
β∈BnT

max
{∣∣∣λmin

([
{H∗

g(β
0
g)}−1/2H

∗
g(β

∗
g){H

∗
g(β

0
g)}−1/2 − Ip

])∣∣∣,∣∣∣λmax

([
{H∗

g(β
0
g)}−1/2H

∗
g(β

∗
g){H

∗
g(β

0
g)}−1/2 − Ip

])∣∣∣}
× ||{H∗

g(β
0
g)}1/2(βg − β0

g)||2

=o(1)C2τ,

which is dominated by I21111. Hence, for β ∈ BnT we have I2111 = −C2τ . Next, we verify

I2112. For g
0
i = gi = g, we have from Lemma 4, 7 and 8

|I2112| =|(βg − β0
g)

⊤{B∗
g(β

∗
g) + E∗

g(β
∗
g)}(βg − β0

g)|

⩽ sup
β∈BnT

{λmax({H
∗
g(β

0
g)}−1/2B

∗
g(β

∗
g){H

∗
g(β

0
g)}−1/2)

+ λmax({H
∗
g(β

0
g)}−1/2E∗

g(β
∗
g){H

∗
g(β

0
g)}−1/2)}||{H∗

g(β
0
g)}1/2(βg − β0

g)||2

=o(1)C2τ,
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which is dominated by I2111. Hence, for β ∈ BnT we have I211 = −C2τ . Next, we verify I212.

|I212| ⩽
∣∣∣(βg − β0

g)
⊤

n∑
i=1

(1{gi = g} − 1{g0i = g})H i(β
∗
gi
)(βgi

− β0
g0i
)
∣∣∣

+
∣∣∣(βg − β0

g)
⊤

n∑
i=1

(1{gi = g} − 1{g0i = g})Bi(β
∗
gi
)(βgi

− β0
g0i
)
∣∣∣

+
∣∣∣(βg − β0

g)
⊤

n∑
i=1

(1{gi = g} − 1{g0i = g})E i(β
∗
gi
)(βgi

− β0
g0i
)
∣∣∣

≡I2121 + I2122 + I2123.

From Cauchy-Schwarz inequality, β ∈ BnT we have

|I2121| ≲λ
−1/2
min (H

∗
)||{H∗

g(β
0
g)}1/2(βg − β0

g)||
n∑

i=1

1{gi ̸= g0i }n{max
1⩽i⩽n

sup
β∈B

λmax(H i(βgi
))}

≲Cλ
−1/2
min (H

∗
)τ 1/2n

( 1
n

n∑
i=1

1{gi ̸= g0i }
)
n{max

1⩽i⩽n
sup
β∈B

λmax(H i(βgi
))}.

From Assupmtions (A1) and (A6), for i = 1, . . . , n we have

max
β∈B

{λmax(H i(βgi
))} ≲ max

β∈B
max

t=1,...,T
[a′′(θit(βgi

)){u′(x⊤
itβgi

)}2]λmax(X
⊤
i X i) = Op(T ),

for β∗
gi
between β0

g0i
and βgi

, which implies that

sup
β∈BnT ,γ∈Γ

|I2121| = Cλ
−1/2
min (H

∗
)τ 1/2n2Top(T

−δ) = op(τ).

Similarly, Cauchy-Schwarz inequality we have

sup
β∈BnT ,γ∈Γ

|I2122| ≲Cλ
−1/2
min (H

∗
)τ 1/2n

( 1
n

n∑
i=1

1{gi ̸= g0i }
)

× n[{max
1⩽i⩽n

sup
β∈B

||B[1]

i (βgi
)||F}+ {max

1⩽i⩽n
sup
β∈B

||B[2]

i (βgi
)||F}].
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It is noted that we have from Cauchy-Schwarz inequality

{B[1]

i (βgi
)}jk

=e⊤
j X

⊤
i diag[R

−1
(β,γ)A

−1/2
i (βgi

){m(X iβ
0
g0i
)−m(X iβgi

)}]G[1]
i (βgi

)X iek

⩽λmax(X
⊤
i X i)λmax(diag[R

−1
(β,γ)A

−1/2
i (βgi

){m(X iβ
0
g0i
)−m(X iβgi

)}])λmax(G
[1]
i (βgi

))

=λmax(X
⊤
i X i) max

1⩽k⩽T

{ T∑
t=1

{R−1
(β,γ)}kjA−1/2

it (βgi
){m(x⊤

itβ
0
g0i
)−m(x⊤

itβgi
)}
}

× λmax(G
[1]
i (βgi

))

=Op(T
2).

Similarly {B[2]

i (βgi
)}jk = Op(T

2), then we have

sup
β∈BnT ,γ∈Γ

|I2122| = λ
−1/2
min (H

∗
)τ 1/2nop(T

−δ)nT 5/2 = op(τ).

Similarly, we have

sup
β∈BnT

|I2123| ≲Cλ
−1/2
min (H

∗
)τ 1/2n

( 1
n

n∑
i=1

1{gi ̸= g0i }
)

× n[{max
1⩽i⩽n

sup
β∈B

||E [1]

i (βgi
)||F}+ {max

1⩽i⩽n
sup
β∈B

||E [2]

i (βgi
)||F}].

It is noted that we have

E[||E [1]

i (βgi
)||2F ]

=
T∑

ℓ=1

E[e⊤
ℓ E

[1]

i (βgi
)⊤E [1]

i (βgi
)eℓ]

=
T∑

ℓ=1

E
[
ε⊤i A

1/2
i (β0

g0i
)A

−1/2
i (βgi

)R
−1
(β,γ)diag[X ieℓ]G

[1]
i (βgi

)X i

×X⊤
i G

[1]
i (β)diag[X ieℓ]R

−1
(β,γ)A

−1/2
i (βgi

)A
1/2
i (β0

g0i
)εi

]
⩽

T∑
ℓ=1

λmax(X
⊤
i X i) max

1⩽i⩽n,1⩽t⩽T
max
β∈B

|q′[1]it (βgi
)| max

1⩽i⩽n,1⩽t⩽T
|x⊤

iteℓ|2

×max
β∈B

{ max
1⩽i⩽n,1⩽t⩽T

A−1
it (βgi

)Ait(β
0
g0i
)}E[ε⊤i εi]

=O(T 3),

which implies that ||E [1]

i (βgi
)||F = Op(T

3/2). Similarly ||E [2]

i (βgi
)||F = Op(T

3/2), then we



22 Biometrics, 000 0000

have

sup
β∈BnT ,γ∈Γ

|I2123| = λ
−1/2
min (H

∗
)τ 1/2nop(T

−δ)nT 3/2 = op(τ).

Thus, I2121, I2122 and I2123 are dominated by I211 for β ∈ BnT and γ ∈ Γ. Hence I21 = −C2τ

for β ∈ BnT and γ ∈ Γ. Lastly, we verify I22. We can write

I22 =− (βg − β0
g)

⊤
n∑

i=1

1{gi = g}1{gi = g0i }{D i(β
∗
gi
)− D i(β

∗
gi
)}(βgi

− β0
g)

− (βg − β0
g)

⊤
n∑

i=1

1{gi = g}1{gi ̸= g0i }{D i(β
∗
gi
)− D i(β

∗
gi
)}(βgi

− β0
g)

≡I221 + I222.

For I221, we can write, from Lemma 5,

|I221| ⩽ sup
β∈BnT

max{|λmax(D i(β
∗
gi
)− D

∗
g(βg))|, |λmin(D i(β

∗
gi
)− D

∗
g(βg))|}

× λ−1
min(H

∗
)||{H∗

g(β
0
g)}1/2(βg − β0

g)||2

=Op({λ−1/2
min (H

∗
)τ 1/2 ∨ n−1/2}T 2n)C2λ−1

min(H
∗
g)τ.

Since λmin(H
∗
) is at least of order larger than Op(nT ), and from definition, we have τ =

supβ∈B,γ λmax({R(β,γ)}−1R0) ⩽ supβ∈B,γ λmax({R(β,γ)}−1)λmax(R
0) ⩽ Op(T ) form As-

sumption (A5), the order of τλ−2
min(H

∗
)n2 is at most Op(T

−1). Then, from Assumption (A3)

we have supβ∈BnT
|I221| = τop(1). As for I222, we have

|I222| ⩽λ
−1/2
min (H

∗
)||{H∗

g(β
0
g)}1/2(βg − β0

g)||

×
n∑

i=1

1{gi = g}1{gi ̸= g0i } · ||D i(β
∗
gi
)− D i(β

∗
gi
)||F · ||βgi

− β0
g||

⩽λ
−1/2
min (H

∗
)τn

( n∑
i=1

1{gi ̸= g0i }
) n∑

i=1

||D i(β
∗
gi
)− D i(β

∗
gi
)||F · ||βgi

− β0
g||.

It is noted that he order of ||D i(βgi
) − D i(βgi

)||F is at most Op(T ). Then, form Lemma

1, supβ∈BnT ,γ∈Γ |I222| = op(T
−δ), which implies that I22 is dominated by I21. Thus, (βg −

β0
g)

⊤Sg(βg) on β ∈ BnT and γ ∈ Γ is asymptotically dominated in probability by I11+I21 =

Cτ −C2τ , which is negative for C large enough, which proves the first part of the Theorem.
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Next, we show the second part of the theorem. We have

P
(
max
1⩽i⩽n

|ĝi(β̂)− g0i | > 0
)

⩽G max
1⩽g⩽G

P (β̂g /∈ BnT ) + n max
1⩽i⩽n

P
(
β̂g ∈ BnT , ĝi(β̂) ̸= g0i

)
.

The order of the first term is o(1) from the first part of the Theorem.We have supβ∈BnT
1{ĝi(β) ̸=

g0i } ⩽
∑G

g=1 Z̃ig. Then,

max
1⩽i⩽n

P
(
β̂g ∈ BnT , ĝi(β̂) ̸= g0i

)
= max

1⩽i⩽n
E[1{β̂g ∈ BnT}1{ĝi ̸= g0i }]

⩽ max
1⩽i⩽n

E
[
1{β̂g ∈ BnT}

G∑
g=1

Z̃ig

]
⩽ max

1⩽i⩽n

G∑
g=1

P (Z̃ig = 1) = o(T−δ),

which proves the theorem.

S.3. Proof of Theorem 2

To show Theorem 2, we need to show the next lemmas.

Let β̃g denote a root of S
∗
g(βg) = 0. The next result shows that the grouped GEE estimator

and the infeasible estimator with known population groups are asymptotically equivalent.

Lemma 9: Suppose the Assumptions (A1)-(A9) hold. As n and T tend to infinity such

that n/T ν → 0 for some ν > 0, we have β̂g = β̃g + op(1) for g = 1, . . . , G.

Proof. We have

sup
β∈BnT ,γ∈Γ

||Sg(βg)− S
∗
g(βg)||

⩽ sup
β∈BnT

||Sg(βg)− Sg(βg)||+ sup
β∈BnT ,γ∈Γ

||Sg(βg)− S
∗
g(βg)||.

Then, we have supβ∈BnT ,γ∈Γ ||Sg(βg) − S
∗
g(βg)|| = Op(T

2) from Lemmas 2 and 3. Since

β̂g ∈ BnT for γ ∈ Γ from Theorem 1 and β̃g ∈ BnT from Theorem 2 in Xie and Yang (2003),
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this implies

sup
γ∈Γ

|(β̂g − β̃g)
⊤{Sg(β̂g)− S

∗
g(β̂g)}| = |(β̂g − β̃g)

⊤S
∗
g(β̂g)| = Op(T

2).

From Taylor expansion, for β∗
g between β̂g and β̃g we have

S
∗
g(β̂g) =S

∗
g(β̃g)− D∗

g(β
∗
g)(β̂g − β̃g)

=−H
∗
g(β

∗
g)(β̂g − β̃g)− {D∗

g(β
∗
g)−H

∗
g(β

∗
g)}(β̂g − β̃g).

Then, we have, from Lemmas 6 - 8,

|(β̂g − β̃g)
⊤{Sg(β̂g)− S

∗
g(β̂g)}| =(β̂g − β̃g)

⊤H
∗
g(β

∗
g))(β̂g − β̃g) + op(1).

Hence, we have

sup
γ∈Γ

inf
β∈BnT

λmin(H
∗
g(β))||β̂g − β̃g||2 ⩽ Op(T

2) + op(1),

which implies ||β̂g − β̃g|| = op(1), since the order of λmin(H
∗
g(β)) is at least Op(nT ). The

Lemma follows from Lemma 1.

Next lemma is almost the same with Lemma 2 in Xie and Yang (2003).

Lemma 10: Suppose the Assumptions (A1)-(A9) hold. Moreover, suppose that, for all

g = 1, . . . , G, there exists a constant ζ such that (c∗T )1+ζγ∗ → 0 as n → ∞. Moreover,

suppose the marginal distribution of each observation has a density of the form from (2.1)

in the main text. Then, when n → ∞, we have

{M ∗
g(β

0
g)}−1/2S

∗
g(β

0
g) → N(0, Ip) in distribution.

Proof. For any p×1 vector λ such that ||λ|| = 1, let λ⊤{M ∗
g(β

0
g)}−1/2S

∗
g(β

0
g) =

∑
i:g0i =g ZnTi,

where ZnTi = λ⊤{M ∗
g(β

0
g)}−1/2X⊤

i ∆i(β
0
g)A

1/2
i (β0

g)R
−1

i (β0,γ0)εi. To establish the asymp-

totic normality, it suffices to check the Lindeberg condition for λ⊤{M ∗
g(β

0
g)}−1/2S

∗
g(β

0
g), that

is, for any ϵ > 0, ∑
i:g0i =g

E[Z2
nTi1{|ZnTi| > ϵ}] → 0,

which is shown in the proof of Lemma 2 in Xie and Yang (2003).
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We will show

{M ∗
g(β

0
g)}−1/2H

∗
g(β

0
g)(β̃g − β0

g) → N(0, Ip) in distribution.

The theorem follows from Lemma 9.

For β∗
g ∈ BnT between β̃g and β0

g, from Theorem 1, we have

{H∗
g(β

0
g)}−1/2S

∗
g(β

0
g)

=− {Hg(β̂
0

g)}1/2(β̃g − β0
g) +

[
{Hg(β̂g)}1/2 − {H∗

g(β
0
g)}1/2

]
(β̃g − β0

g)

−
[
{H∗

g(β
0
g)}−1/2D

∗
g(β

∗
g){H

∗
g(β

0
g)}−1/2 − Ip

]
{H∗

g(β
0
g)}1/2(β̃g − β0

g).

From Lemmas 4 and 6 - 8, the second term in the right hand side of the above equation

is op(1), which implies that {M ∗
g(β

0
g)}−1/2S

∗
g(β

0
g) and {M ∗

g(β
0
g)}−1/2H

∗
g(β

0
g)(β̃g − β0

g) are

asymptotically identically distributed. Hence, the theorem follows from Lemma 10.

S.4. Property of R
∗
(β,γ)

In this section, we denote the estimated unstructured working correlation matrix as R̂
∗
(β,γ) =

R∗(α̂(β,γ),β,γ) for α̂(β,γ) given in (2.4) in the main text. Then, it follows that

R
∗
(β,γ) =

1

n

n∑
i=1

A
−1/2
i (βgi

)A
1/2
i (β0

g0i
)R0A

1/2
i (β0

g0i
)A

−1/2
i (βgi

)

+
1

n

n∑
i=1

A
−1/2
i (βgi

){m(X iβ
0
g0i
)−m(X iβgi

)}{m(X iβ
0
g0i
)−m(X iβgi

)}⊤A−1/2
i (βgi

).

The next lemma shows that R
∗
(β,γ) satisfies Assumption (A5) (ii).

Lemma 11: Suppose Assumptions (A1)-(A8) hold. It holds that λmax({R
mo

(β0,γ)}−2R0) =

Op(1) for any γ.

Proof. Since the eigenvalues of R
∗
(β0,γ)(R0)−1/2 and (R0)−1/4R

∗
(β0,γ)(R0)−1/4 are the

same, we will show that λmin((R
0)−1/4R

∗
(β0,γ)(R0)−1/4) is bounded away from zero. It can
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be written as

λmin((R
0)−1/4R

∗
(β0,γ)(R0)−1/4)

⩾λmin

(
(R0)−1/4 1

n

n∑
i=1

A
−1/2
i (β0

gi
)A

1/2
i (β0

g0i
)R0A

1/2
i (β0

g0i
)A

−1/2
i (β0

gi
)(R0)−1/4

)
+ λmin

(
(R0)−1/2 1

n

n∑
i=1

A
−1/2
i (β0

gi
){m(X iβ

0
g0i
)−m(X iβ

0
gi
)}

× {m(X iβ
0
g0i
)−m(X iβ

0
gi
)}⊤A−1/2

i (β0
gi
)(R0)−1/2

)
.

Since the smallest eigenvalue does not diverge to infinity, it is enough to show that the first

term of the right-hand side of the above inequality is bounded away from zero. Then, we

have

λmin

(
(R0)−1/4 1

n

n∑
i=1

A
−1/2
i (β0

gi
)A

1/2
i (β0

g0i
)R0A

1/2
i (β0

g0i
)A

−1/2
i (β0

gi
)(R0)−1/2

)
⩾ 1

n

n∑
i=1

λmin

(
(R0)−1/4A

−1/2
i (β0

gi
)A

1/2
i (β0

g0i
)R0A

1/2
i (β0

g0i
)A

−1/2
i (β0

gi
)(R0)−1/4

)
⩾ 1

n

n∑
i=1

λ2
min

(
(R0)−1/4A

−1/2
i (β0

gi
)A

1/2
i (β0

g0i
)(R0)1/2

)
⩾ 1

n

n∑
i=1

min
1⩽t⩽T

{A−1
it (β

0
gi
)Ait(β

0
g0i
)}λ1/4

min(R
0) > 0,

where the last inequality follows from Assumption (A5) (i).

The next lemma shows that R̂
∗
(β,γ) satisfies Assumption (A9) (i).

Lemma 12: Under Assumptions (A1)-(A8), it holds that for any γ,

sup
β∈BnT

max
1⩽k,l⩽T

{R̂
∗
(β,γ)− R̂

∗
(β0,γ)}kl = Op(λ

−1/2
min (H

∗
)τ 1/2).
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Proof. For any γ, we can write

R̂
∗
(β,γ)− R̂

∗
(β0,γ)

=
1

n

n∑
i=1

A
−1/2
i (βgi

){yi −m(X iβgi
)}{yi −m(X iβgi

)}⊤A−1/2
i (βgi

)

−
n∑

i=1

A
−1/2
i (β0

gi
){yi −m(X iβ

0
gi
)}{yi −m(X iβ

0
gi
)}⊤A−1/2

i (β0
gi
)

=
1

n

n∑
i=1

{A−1/2
i (βgi

)−A
−1/2
i (β0

gi
)}{yi −m(X iβgi

)}

× {yi −m(X iβgi
)}⊤{A−1/2

i (βgi
)−A

−1/2
i (β0

gi
)}

+
1

n

n∑
i=1

{A−1/2
i (βgi

)−A
−1/2
i (β0

gi
)}{yi −m(X iβgi

)}{yi −m(X iβgi
)}⊤A−1/2

i (β0
gi
)

+
1

n

n∑
i=1

A
−1/2
i (β0

gi
){yi −m(X iβgi

)}{yi −m(X iβgi
)}⊤{A−1/2

i (βgi
)−A

−1/2
i (β0

gi
)}

+
1

n

n∑
i=1

A
−1/2
i (β0

gi
)
[
{yi −m(X iβgi

)}{yi −m(X iβgi
)}⊤

− {yi −m(X iβ
0
gi
)}{yi −m(X iβ

0
gi
)}⊤

]
A

−1/2
i (β0

gi
)

≡
4∑

j=1

Ij.

From Taylor expansion, for β∗
gi
between βgi

and β0
gi
, we have

1− A
1/2
it (βgi

)A
−1/2
it (β0

gi
) =1−

√
a′′(x⊤

itβgi
)

a′′(x⊤
itβ

0
gi
)

=− 1

2
{a′′(x⊤

itβ
∗
gi
)a′′(x⊤

itβ
0
gi
)}−1/2u′(x⊤

itβ
∗
gi
)x⊤

it(βgi
− β0

gi
).



28 Biometrics, 000 0000

Then, the (k, l)-element of I1 can be written as

1

n

n∑
i=1

{A−1/2
ik (βgi

)− A
−1/2
ik (β0

gi
)}{A−1/2

il (βgi
)− A

−1/2
il (β0

gi
)}

× {yik −m(x⊤
ikβgi

)}{yil −m(x⊤
ilβgi

)}

=
1

4n

n∑
i=1

{a′′(x⊤
ikβ

∗
gi
)a′′(x⊤

ikβ
0
gi
)}−1/2u′(x⊤

ikβ
∗
gi
)x⊤

ik(βgi
− β0

gi
)

× {a′′(x⊤
ilβ

∗
gi
)a′′(x⊤

ilβ
0
gi
)}−1/2u′(x⊤

ilβ
∗
gi
)x⊤

il (βgi
− β0

gi
)

× A
−1/2
ik (βgi

){yik −m(x⊤
ikβgi

)}{yil −m(xilβgi
)}A−1/2

il (βgi
)

≲
( 1
n

n∑
i=1

(βgi
− β0

gi
)⊤xikx

⊤
ik(βgi

− β0
gi
){yik −m(x⊤

ikβgi
)}2

)1/2

×
( 1
n

n∑
i=1

(βgi
− β0

gi
)⊤xilx

⊤
il (βgi

− β0
gi
){yil −m(x⊤

ilβgi
)}2

)1/2

⩽{max
1⩽t⩽T

λmax(xitx
⊤
it)}

1

n

n∑
i=1

||βgi
− β0

gi
||2{yik −m(x⊤

ikβgi
)}2,

where the second last inequality follows from Cauchy-Schwarz inequality. Since we have for

all t = 1, . . . , T , λmax(xitx
⊤
it) = Op(1) and 1

n

∑n
i=1{yit − m(x⊤

itβgi
)}2 = Op(1), this implies

that the order of {I1}k.l is Op(λ
−1
min(H

∗
)τ) for β ∈ BnT . Similarly, the order of {I2}kl and

{I3}kl are Op(λ
−1/2
min (H

∗
)τ 1/2) for β ∈ BnT . For I4, we can write

I4 =
1

n

n∑
i=1

A
−1/2
i (β0

gi
){m(X iβ

0
gi
)−m(X iβgi

)}{yi −m(X iβ
0
gi
)}⊤A−1/2

i (β0
gi
)

+
1

n

n∑
i=1

A
−1/2
i (β0

gi
){yi −m(X iβ

0
gi
)}{m(X iβ

0
gi
)−m(X iβgi

)}⊤A−1/2
i (β0

gi
)

+
1

n

n∑
i=1

A
−1/2
i (β0

gi
){m(X iβ

0
gi
)−m(X iβgi

)}{m(X iβ
0
gi
)−m(X iβgi

)}⊤A−1/2
i (β0

gi
)

≡
3∑

j=1

I4j.

By using (1) for β∗
gi

between βgi
and β0

gi
, the (k, l)-element of I41 can be written as from
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Cauchy-Schwarz inequality,

1

n

n∑
i=1

A
−1/2
ik (β0

gi
)A

−1/2
il (β0

gi
){m(x⊤

ikβ
0
gi
)−m(x⊤

ikβgi
)}{yil −m(x⊤

ilβ
0
gi
)}

=
1

n

n∑
i=1

A
−1/2
ik (β0

gi
)A

−1/2
il (β0

gi
)ϕAik(β

∗
gi
)u′(x⊤

ikβ
∗
gi
)x⊤

ik(β
0
gi
− βgi

){yil −m(x⊤
ilβ

0
gi
)}

≲
( 1
n

n∑
i=1

(β0
gi
− βgi

)⊤xikx
⊤
ik(β

0
gi
− βgi

)
)1/2

×
( 1
n

n∑
i=1

A−1
ik (β

0
gi
)A−1

il (β
0
gi
)A2

ik(β
∗
gi
){u′(x⊤

ikβ
∗
gi
)}2{yil −m(x⊤

ilβ
0
gi
)}⊤{yil −m(x⊤

ilβ
0
gi
)}
)1/2

,

which implies that the order of {I41}kl is Op(λ
−1/2
min (H

∗
)τ 1/2) for β ∈ BnT . Similarly, the order

of {I42}kl and {I43}kl are Op(λ
−1/2
min (H

∗
)τ 1/2) and Op(λ

−1
min(H

∗
)τ), respectively for β ∈ BnT ,

which proves the lemma.

The next lemma shows that R̂
∗
(β,γ) satisfies Assumption (A9) (ii).

Lemma 13: Under Assumptions (A1)-(A8), it holds that for any γ,

sup
β∈BnT

max
1⩽k,l⩽T

|{R̂
∗
(β,γ)−R

∗
(β,γ)}k.l| = Op(n

−1/2 ∨ λ
−1/2
min (H

∗
(β0))τ 1/2),

Proof. From Lemma 12, it is enough to show that

max
1⩽k,l⩽T

{R̂
∗
(β0,γ)−R

∗
(β0,γ)}kl = Op(n

−1/2).

We can write

R̂
∗
(β0,γ)−R

∗
(β0,γ)

=
1

n

n∑
i=1

A
−1/2
i (β0

gi
)
{
{yi −m(X iβ

0
g0i
)}{yi −m(X iβ

0
g0i
)}⊤ −Σi

}
A

−1/2
i (β0

gi
)

+
1

n

n∑
i=1

A
−1/2
i (β0

gi
){m(X iβ

0
g0i
)−m(X iβ

0
gi
)}{yi −m(X iβ

0
gi
)}⊤A−1/2

i (β0
gi
)

+
1

n

n∑
i=1

A
−1/2
i (β0

gi
){yi −m(X iβ

0
gi
)}{m(X iβ

0
g0i
)−m(X iβ

0
gi
)}⊤A−1/2

i (β0
gi
)

=I1 + I2 + I3.
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For σikl = {Σi}kl, the (k, l)-element of I1 can be written as

{I1}kl =
1

n

n∑
i=1

A
−1/2
ik (β0

gi
)A

−1/2
il (β0

gi
)[{yik −m(x⊤

ikβ
0
g0i
)}{yil −m(x⊤

ilβ
0
g0i
)} − σikl].

Then, it is obvious E[{I1}kl] = 0 and

Var({I1}kl) =
1

n2

n∑
i=1

A−1
ik (β

0
gi
)A−1

il (β
0
gi
)Aik(β

0
g0i
)Ail(β

0
g0i
)Var(εikεil)

⩽ 1

n2

n∑
i=1

A−1
ik (β

0
gi
)A−1

il (β
0
gi
)Aik(β

0
g0i
)Ail(β

0
g0i
)(E[ε4ik]E[ε4il])

1/2 = Op(1/n),

where the last equality follows from Assumptions (A1) and (A4). Then, this implies that the

order of the (k, l)-element of I1 is Op(n
−1/2). Similarly, both of the (k, l)-elements of I2 and

I3 are Op(n
−1/2), which implies the lemma.

The next lemma shows that R̂
∗
(β,γ) satisfies Assumption (A9) (iii).

Lemma 14: Under Assumptions (A1)-(A8), it holds that for any β ∈ B, γ and γi∗

whose only ith component differs from that of γ,

max
1⩽k,l⩽T

|{R̂
∗
(β,γi∗)− R̂

∗
(β,γ)}kl| = Op(1/n).

Proof. The lemma immediately holds since we can write

{R̂
∗
(β,γi∗)− R̂

∗
(β,γ)}kl

=
1

n

{
A

−1/2
ik (βg∗i

)A
−1/2
il (βg∗i

){yik −m(x⊤
ikβg∗i

)}{yil −m(x⊤
ilβg∗i

)}

− A
−1/2
ik (βg∗i

)A
−1/2
il (βg∗i

){yik −m(x⊤
ikβg∗i

)}{yil −m(x⊤
ilβg∗i

)},

which is of order Op(1/n).

The next lemma shows that R̂
∗
(β,γ) satisfies Assumption (A9) (iv).

Lemma 15: Under Assumptions (A1)-(A8), it holds that for any β ∈ B, any γ satisfying

supβ∈BnT
n−1

∑n
i=1 1{gi ̸= g0i } = op(T

−δ) and all δ > 0,

max
1⩽k,l⩽T

|{R̂
∗
(β,γ)− R̂

∗
(β,γ0)}kl| = op(T

−δ).
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Proof. From Cauchy-Schwarz inequality, we can write

{R̂
∗
(β,γ)− R̂

∗
(β,γ0)}kl

=
1

n

n∑
i=1

1{gi ̸= g0i }
{
A

−1/2
ik (βgi

)A
−1/2
il (βgi

){yik −m(x⊤
ikβgi

)}{yil −m(x⊤
ilβgi

)}

− A
−1/2
ik (βg0i

)A
−1/2
il (βg0i

){yik −m(x⊤
ikβg0i

)}{yil −m(x⊤
ilβg0i

)}
}

⩽
( 1
n

n∑
i=1

1{gi ̸= g0i }
)1/2

×
( 1
n

n∑
i=1

{
A

−1/2
ik (βgi

)A
−1/2
il (βgi

){yik −m(x⊤
ikβgi

)}{yil −m(x⊤
ilβgi

)}

− A
−1/2
ik (βg0i

)A
−1/2
il (βg0i

){yik −m(x⊤
ikβg0i

)}{yil −m(x⊤
ilβg0i

)}
}2)1/2

.

Since we have

1

n

n∑
i=1

{
A

−1/2
ik (βgi

)A
−1/2
il (βgi

){yik −m(x⊤
ikβgi

)}{yil −m(x⊤
ilβgi

)}

− A
−1/2
ik (βg0i

)A
−1/2
il (βg0i

){yik −m(x⊤
ikβg0i

)}{yil −m(x⊤
ilβg0i

)}
}2

= Op(1),

the lemma follows from Lemma 1.

S.5. Additional numerical results

S.5.1 Details of competing methods in simulation studies

We here provide details of competing methods used in the simulation study in Section 4.

- (RC; random coefficient model) Fit the following logistic random coefficient model:

yit ∼ Ber(pit), logit(pit) = x⊤
itβi, βi ∼ N(β0,V ).

The model is fitted by using the R package “lme4” (Bates et al., 2016).

- (GMM; growth mixture model) Fit the following growth mixture model:

f(yit|xit) =
L∑

ℓ=1

πℓBe(yit;x
⊤
itβℓ),

L∑
ℓ=1

πℓ = 1,

where Be(yit;x
⊤
itβℓ) denotes the Bernoulli distribution with success probability being 1/{1+

exp(−x⊤
itβℓ)}, and L is set to the same number of groups used in the GGEE method. The
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model parameters are estimated via an EM algorithm. The subject-specific estimates of

coefficients are given by β̂i =
∑L

ℓ=1 p̂iℓβ̂ℓ, where p̂iℓ is the posterior probability that the

ith subject is classified to the ℓth group.

- (PWP; pair-wise penalization method) Consider the subject-wise logistic regression, yit ∼

Ber(pit) with logit(pit) = x⊤
itβi, and estimate βi by maximizing the following objective

function:

n∑
i=1

T∑
t=1

{yit log pit + (1− yit) log(1− pit)} − λ
∑
i∼j

p∑
k=1

|βik − βjk|,

where i ∼ j denotes contingency between ith and jth subjects and λ is a tuning parameter.

Based on the output of RC, we first computed the pair-wise difference of estimated

regression coefficients and obtained a minimum spanning tree over n subjects. Then, pairs

of connected subjects in the minimum spanning tree are regarded as “adjacent” in the above

penalty term. The above objective function is easily optimized, and λ can be selected via

cross-validation by using the R package “glmnet” (Friedman et al., 2010). This method

can be regarded as an alternative and scalable version of the pair-wise penalization method

by Zhu et al. (2018).

S.5.2 Performance of confidence intervals

We carry out simulation studies to investigate the performance of the Wald-type confidence

intervals based on the estimated variance-covariance matrices using the form given in Theo-

rem 2 (plug-in method) and the clustered bootstrap. We adopted the same data generating

process used in the first simulation study in Section 4. We estimate variance-covariance ma-

trices of βg for g = 1, 2, 3, based on the plug-in and clustered bootstrap (with 100 bootstrap

samples) methods, and then obtain Wald-type 95% confidence intervals, denoted by CIgk for

k = 1, . . . , p. The performance of the intervals are evaluated by coverage probability (CP),

(pG)−1
∑G

g=1

∑p
k=1 I(βgk ∈ CIgk), and average length (AL), (pG)−1

∑G
g=1

∑p
k=1 |CIgk|, which

are averaged over 500 Monte Carlo replications. The results are shown in Table 1. It shows
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that the plug-in method tends to exhibits under-coverage probability when T is small. On

the other hand, the bootstrap approach produces desirable confidence intervals with coverage

probability close to the nominal level and longer interval lengths than those of the plug-in

method.

[Table 1 about here.]

S.5.3 Additional results in Section 5

In Figure 1, we provided the CVA values for candidate values of G. It shows that the CVA

value basically decreases from G = 2 and attains the minimum value at G = 8.

[Figure 1 about here.]

References

Bates, D., Machler, M., Bolker, B., and Walker, S. (2016). Fitting linear mixe-effects models

using lme4. Journal of Statistical Software 67, 1–48.

Bonhomme, S. and Manresa, E. (2015). Grouped pattern of heterogeneity in panel data.

Econometrica 83, 1147–1184.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized

linear models via coordinate descent. Journal of statistical software 33, 1.
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Figure 1. The CVA value for each G (the number of groups).
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Table 1
Coverage probability (CP) and average length (AL) of 95% confidence intervals of group-specific parameters based on
the plug-in and clustered bootstrap methods under exchangeable correlation (EX), first-order autoregressive (AR) and

unstructured (US) working correlation matrices, averaged over 500 Monte Carlo replications.

Plug-in Bootstrap
(n, T ) EX AR US EX AR US

(180, 10) CP 90.7 87.3 88.4 95.3 93.8 95.3
AL 0.67 0.66 0.65 0.95 1.04 0.95

(180, 20) CP 92.9 90.4 88.0 95.2 94.6 96.5
AL 0.56 0.56 0.55 0.68 0.74 1.08

(270, 10) CP 90.5 86.0 88.5 94.7 92.4 94.5
AL 0.55 0.54 0.54 0.71 0.78 0.73

(270, 20) CP 93.1 91.1 89.7 95.4 95.1 95.7
AL 0.46 0.46 0.46 0.54 0.60 0.66


