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S.1. Additional assumptions

We give the following notations similar to those in Xie and Yang (2003), which are needed to
provide assumptions assuring a sufficient conditions for the conditions (I*), (L*) and (CC) in
Xie and Yang (2003), under which the existence, weak consistency and asymptotic normality

of the GEE estimator hold:

—-1
)‘max s . B
(1_3_1(5' 7)), =7  max _max xy{H,(8))} 'z
By Amin(R (8,7)) 1<i<n, 1<t<T 1<g<G

In addition to the Assumption (A1)-(A5), we assume the following regularity assumptions

for the grouped GEE:

ASSUMPTION S.1:

(A6) For all i = 1,...,nand t = 1,...,T, a’(0;) is uniformly three times continuously
differentiable, a”(6;) is uniformly bounded away from 0, and w(n;;) is uniformly four times
continuously differentiable and u'(n;) is uniformly bounded away from 0.

(A7) For all ¢ = 1,...,n, there exist positive constants, by, by and b3, such that b; <
Amin(RT) I X X)) < A (0D P00 X X)) < by and A (T2 X X)) < s
For all 4, there is ¢ such that x;,, # x;v, for some ¢t # t'.

(A8) (i) 7°¢ — 0 and (i) v7€ — 0 for v = (VT A T/ minicicn1<cr{0* (@1 Bg)})-

(A9) (i) supgep, , maxi<picr |{R(ex, B,7) — R(ex, 8% ) il = Op(\i2(H)7?) for any o
and v, (i) for any , supges, , maxicpicr |[{R(8,7)~R(B,7) | = Op(n V2VALL (H )72
and max, <y <7 [{R(B%, ) — R(B°,7) }ra| = O,(n~Y/2), and (iii) for any o, B and ~,, whose
only ith component differs from that of ~, max;cri<r [{R(e, 8,7;,) — R(e, B,7) |l =

0,(1/n). (iv) for any B € B and all § > 0, max,<; <1 [{R(8,7) — R(8,7°) }ut| = 0,(T~?)

fory €T, where I' = {y = (g1,...,90) : n ' >0 H{gi # ¢¥} = 0,(T7?) for all § > 0}.

Assumption (A6) requires that the marginal variance of y;; is uniformly larger than 0 for

any 3€ Bandx; € X foralli=1,...,nandt = 1,...,T. The boundedness of a¥)(6;,) and
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u® (n;,) for B,’s in a local neighborhood around ,82 is also required to ensure the asymptotic
properties of GEE estimators, which is satisfied from Assumptions (Al). Assumption (A7)
is also imposed well and ensures combined with Assumptions (A2) (i) that Hy(8,), My(83,)
and so on are invertible when n or T is sufficiently large. Assumption (A8) is the technical
assumption similar to the assumptions in Lemma A.2 (ii), and A.3 (ii) of Xie and Yang
(2003), which ensure the sufficient conditions for the conditions (I*) and (CC) in Xie and
Yang (2003). The idea behind Assumption (A9) is similar to that of the condition (A4) in
Wang (2011), that is, it is essential to approximate S,(3,) by EZ(Bg) whose moments are
easier to evaluate. For this, Assumption (A9) (i) and (ii) say that the estimated working
correlation matrix can be approximated by R(,@O, ~) in a local neighborhood of ,Bg’s and a.
Assumption (A9) (iii) says that each cluster is linearly additive for estimating the working
correlation matrix. Then, this is an intuitively reasonable assumption that most of the
working correlation matrix estimators satisfy. Assumption (A9) (iv) says that the estimated
working correlation matrix can be approximated by I_E(B,'yo) if groups are consistently
classified to their true groups on average. In Section S.4, we provide the accuracy of these
approximations under the unstructured working correlation matrix.

We use the following notations. The notation a,r < b, means that a,r < Cb,r for all
n and 7', for some constant C' that does not depends on n and T'. For a column vector a,
we use a' to denote the transpose of a and ||a|| to denote the Euclidean norm of a. For
a matrix A, { A}y denotes the (k,l)-element of A, A\pnin(A) (Anax(A)) denotes the smallest

(largest) eigenvalue of A, A" denotes the transpose of A and [|A||p = {tr(A" A)}'/? is the

Frobenius norm of A. We use the notation a V b = max(a,b) and a A b = min(a, b).

S.2. Proof of Theorem 1

First of all, we need to show the next lemma.
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LEMMA 1: Suppose the Assumptions (A1)-(A9). If n/T" — 0 for some v > 0, it holds

that for all 6 > 0,

sup 3 1{Gi(B) £ 0°} = 0,(T~),

ﬂeBnT n i=1

where g;(B) is obtained by (2.3) in the main text.

Proof. For any =, 7,, is obtained by replacing only its ith element with ¢?, that is v,, =
(915--++9i-1,9Y, Gix1,- - -, gn). Note that, from the definition of g;(3), we have, for all g =

1,...,G,
1{5:(8) = g <1{{y, - m(X:iB,)} R (B. 91y - m(X:8,)}

< {y, — m(XiB)} R (B vy, — m(XiBy)H .

Then, we can write

S UGB £ 4 Z Zl{gz#g}l{% DY

g=1 =1

n

S|

where

Zi(8,) =Ha! # 911 {{y, — m(X:B,)} R (B.9){y, — m(X:B,)}

<{y, — m(XiB)} R (B 7.0y, — m(XiBp)} .

Similar to the proof of Lemma B.4 in Bonhomme and Manresa (2015), we start by bounding

Zig(B,) on B € B,r by a quantity that does not depend on 3. Denote

Wig(B) ={y, — m(X:B8,)} R (8,v){y, — m(X:B,)}

—{yi —m(X B} R (B0 {y — m(XiB)}

then we have

Zig(By) = gl # g3 1{Wiy(B) < 0} < 1{g] # g} 1{Wiy(8") < [Wiy(B") — Wiy(B)]}.
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We have

[Wig(B°) — Wig(B)

<|{y, ~ m(XiBY)} TR (8" 7o)y, — m(X B}
— = m(X B} R (B vy — m(Xi8,))
+ [y = m(XB)Y R (8" )y, — m(XB)))
—{y,—m(X:8,)} R (B.9){y, —m(X:8,)}]

=K(8) + K2(B).

9
We can write

KD (8) <Hyi - m(X B3} {R (8% 7.0) — B (B, 7i0)Hy, — m(X:8%)}

+2{m(Xi8%) —m(XiBy)} TR (B i)y — m(X.8%)}

Since Ay (B,) < ooforalli=1,...,nandt=1,...,T, for I}, we can write From Assumption

(A1), (Ab) and (A9) (i), there is a constant C1, independent of n and T such that

T
1/ 1
sup I :ClCT/\milr{Q(H )7‘1/2<— E 512,5).
BEBLT T j=1

For I,, from Taylor expansion, for ,BZQ between /62(_] and 3,0, we have
(X B%) — (X Bp) = GA(Bi0) A(Bi0) Xo(8 — Bip). 1)
Since maxi<i<, Maxi<r U (x,8,) < 0o from Assumptions (A1) and (A6), we have

Iy S,Hﬁ_l(ﬁomo){m(XiﬁSg) —m(XiByo)} - [leill
~—1

(B (8% 7:0)){(Bj0 — Byo) X Ai(B0) A (B30) Ai(B30) X i(Bgp — Byo)} el

~—1
Shmax (B (8°, 7o) M (X X018y — Bioll(e] €)'/,

Then, from Assumptions (A5), (A7) there is a constant Cy, independent of n and T" such



Supporting Information for “Grouped GEE for longitudinal data”

that

—1/2 L\ )2
sup I, < Co.CTA . “(H )7'1/2<— ZQ%%) -

BeB.r min T —
As is the case with I, there is a constant C3, independent of n and T such that supgeg, ,. I3 <

C3C?*T AL

min

(H)7. For KZ-(;) (B), we can write

-1

K2 (B) <|{y; - m(X,80} (R (8" 7) - R (8,9 Hy, — m(X:8))}]
+2[{m(X:B0) — m(X.8,)} R (8,7){y, — m(X.8)}]
+{m(X:B) —m(X:B,)} TR (B,7){m(X:8) — m(X:B,)}.

From the similar argument for Ki(;)(ﬁ), we can bound Ki(;) (B) by C’4(CT)\71/2(F*)7'1/2 +

C2TA L

(H")7) for some Cy > 0. Next, we will bound W;,(8°,7) from below. It can be

written as
Wig(8%,7) ={y: — m(X:B)} {R (8% %) — R (8,0 Hy: — m( X850}
+{m(X %) — m(X:B)} R (B 9){m(X:BY) — m(X:80)}

+2{m(X,8%) ~ m(X,60)} R (8°.7){y; — m(X %)}

3
j=1

From Assumption (A1) , (A5) and (A9) (iii),, there is a constant Cj, independent of C' and

T, such that J; > —C5(T/n)(3._, €%/T). For Jy, we have
Jy ={m(X8%) — m(X:B)} R (8% 4) {m(X:8%) — m(X.65)}
+ {m(XB5%) — m(X B9} (R (8°7) — B (8% ) Hm(X:8%) — m(X,8))}
=Jo1 + Joo.

For J51, by using (1), we have for 3, between ,629 and ,62,

1

Jon = (8% — BT X] A«B)) A8, )R (8" 7)Ai(B;,) Ai(B,) X (8L — BY).

From Assumption (A7), Jo; is at least of order O,(7"). Then, from Assumption (A2) (ii)

there is a constant Cf, independent of C' and T, such that Jy; > C¢T. From Assumptions
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(A5) and (A9) (ii), it can be shown that Jo is dominated by Ja;, then there is a constant

Cs, independent of C' and T, such that J, > CsT. Denote &; = (R")"'/%¢;. For Js, we have

Js :2{m(Xz‘,329) - m(XZ"62>}TE71(/8077)A3/2(,82?>(R0)1/2’§i
+2{m(XB) — m(X:B)} (R (8%~) — B (8 9)Hy, — m(X8%)}
=J31 + J32.

From Assumption (A9) (ii), Jsp is dominated by Js;. Let UAU ' be the eigendecompo-

sition of ﬁfl/Z(,BO,'y)Al/z(,B )(Ro)l/Q, where A = diag(A,...,Ar) for Ay >,...,Ar is a

(2

diagonal matrix formed from the eigenvalues and U is the corresponding eigenvectors of

§_1/2(5077)A;/Q(ﬁgg)(R0)1/2. Then we can write

={m"(X:By) —m"(XiBy)} A& (1 + 0,(1))
=Cr Z Ae{m* (z ztﬁ *(wlﬁg)}?&(l + 0,(1)),

for m*(X,8,) = UR " (BO,V)m(X,-Bg) and €; = Ug;. Combined with the above results,

we thus obtain

sup Zig(8,)
ﬁeBnT

<1{g; # g}
T

-0 (232) +c6T+c7ZAt{m 18%) = m (@ B0 + 0,(1)
t=1
-1/2 1/2 S —1/2 -1/2 s 1/2
C'1cfir/\rmn (H ) (T Z > + Cbc’ir)‘mm <T Z € t)

t=1 t=1

+ CRCPTAL (H )7 + Coy(CTA Y2 (EH V2 + ¢* AL (H )7)}.

min (

Since the right-hand side of the above inequality does not depend on 8, for g = 1,...,G,

we can denote it as Z;,. As a result, we have

n

ap S 1{G(8) # o) ZZZW

BBt T i i=1 g=1

Using standard probability algebra, we have for all ¢ and M in Assumption (A4) and for
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any 0 < c < 1,
P (Zig =1)

T

T
1/1 1 « * ~
P(=Coo(5208) +Co+ Cn Z A{m* (] B%) — m* (2, 89)}25, (1 + 0,(1))
t=1 =

| —
M)ﬂ
™

S
N——
—

~

[\

T
< CONSHE )R (130 ) + GO )2 (4

t=1 t=1

+ GO ()7 + GO ()72 4 C2L (D))

mln( min

T
1 2 1—c 1 1/2 -1/2
gP(T;‘gzt>n M> ( ggt/ mln ) M)

N

T
D el = A )TﬁlM)
t=1

4 PR3 Ml (@ BY) — m @] BE (1 + 0y(1)

t=1

’ﬂlH

< Osn~ M — Cg + C,CM + CoCVM

+ OO )7 + CUON(E )72 4 CALL () ).

min min min

From Markov’s inequality, we have for any 6 > 0,

(322 o) <o (—ww) e (132)]

IIM’%

Since E[T'Y.1 €2] = 1 and Var(T™' Y], €2) < oo from Assumption (A4), we have

T-'3°7 €2 = O,(1). Then, we have P(T~'S.]_ €% > n'"*M) = 0,(T?) for any § > 0.

Similarly, we have

<exp ( N M) E e (5 ia?t)] = 0,(T7),

where the second inequality follows from Assumption (A3). Similarly, we have

(%ZT}V Aunin )-1M) 0, ().
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For the last probability,
1 T
P(5:0 Y Ml (@] BYy) = m* (@] B))}E (1 + 0,(1)
=1

< Csn~ M — Cg + CLCM + CoCVM

2y—1
+ 030 >\min min min

(H)r -+ Co( A (H )72 4 C20LL (H ) ),
the right-hand side of the inequality in the probability, the first and the last two terms are
dominated by other terms as n,T — oco. Then, by taking a sufficiently small C, for n > 0,

the probability can be bounded above by

T
P(\@;At{m*w; o) — (] 8) )2

Moreover, it is noted that m*(x;, 2?) — m*(z,8)) = Oy(1) for all i and ¢, and A\,’s can
be bounded by the eigenvalues of Eil/z(ﬂo, ~)(R")'/? multiplied by a constant. Then, the
left-hand side of the inequality is a linear combination of €}, and its expectation is 0, and
the order of its variance is at most O(T + 7). Since &}, for t = 1,...,T are uncorrelated,
we can use Theorem 6.2 in Rio (2000), in which the second term of the right-hand side of
the equation (6.5) vanishes in this case due to the uncorrelatedness of €;;’s. Thus, by using
the consequence of Theorem 6.2 in Rio (2000) for A = Tp/4, r = TY/? and s2 = T + 7, the
probability above is bounded above by 4{1 + T2n2/(16TY2(T + 7))} T"*/2 = o(T~?) for

any 0 > 0. This ends the proof.

Similar to Wang (2011), in order to prove the consistency it is essential to approximate
S,(8,), H,(B,) and so on by gZ(Bg) and ﬁ;(ﬁ ;) whose moments are easier to evaluate. The
following lemmas 2 - 8 establish the accuracy of these approximations, which play important

roles in deriving the asymptotic normality.

LEMMA 2:  Suppose the Assumptions (A1)-(A9). If n/T" — 0 for some v > 0, it holds
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that, for allg=1,...,G and all 6 > 0,

sup [[{H,(B))}*{S,(8,) = S;(B)H| = Opit”(H )nT)op(T7°),

ﬂEBnT/YEF

sup [[{H,(B9)}*{5,(8,) = Sy (B)H| = OpAit*(H nT)o,(T ).

ﬂEBnTv'YEF

Proof. We will show the second part of the lemma. Form Assumption (A9) (ii), the first
part of the lemma can be shown similarly by replacing R(3,v) and R(3,~°) with 1/%([3, )

and IAi(B, ~°) respectively. It can be written as

54(8,) —5,(8,)

1

Z 1{g = g} X! A(B,) A" (B,) R (B,7)A;*(B){y: — m(X.8,)}

n

S 1{g? = g} X A(B,) A (B)R (B, A (B )y — m(XiB,)}

=1

=Zl{g?=g}xiAi<ﬁg>Al/2< MR (B.9) - R (BAIA (B, {y: — m(XiB8,)}

+ Z 1{g; = g} — 1{g? = g X] Ai(B,) A2 (B)R (8.7 A *(B,){w, - m(X.B,)}

=1

Ell + ]2.

For I, we have

I = Z Z (R (B4R BA)} s Ak B g)Ai_th/Q(/Bg){yitQ — m(x;;,B,)} i,

i:g0=g t1,t2=1

=Y S HEBY) R (BAe

t1=1t2=1
< | S LB AL P BIHAL Bz + mlw,B)) — m(w,8,) kv
291 =9

It is noted that we have

|:H Z Azlt/12 zt21/2 (Bg)Azlt/gz (/6 EitoLity ] Z wztlwltl = )7

igd=g ixgd=g
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and
2
1/2 —1/2
sup E:AA DAL2(B) (], B) — m(xy,B8,)
ﬁEBnT .
2
1 2 —1/2 . %
< sup Z! A8 )AL B (], B, Ve, (8) - By,

S sup Z IBO mltz zt2<180 /Bg)miTtlwitl
BEBnTig =g

=0, (n\; L (H)7).

It is noted that maxy< ;<1 |{1A%_1(,3, ~0) — IA%_l(B, ¥) | = 0,(T79) for v € T from Assump-
tion (A9) (iv). Then, we have supgep . ||11]| = Op(n'/*T?)0,(T~°). For I, we have from the
triangle inequality
122 < Zl{gz 7&9?}2 1X7 A8, A2 (B)R(B,7)A;2(B,){y, — m(X:8,)}|*
=1

Since we have

1X] A(B,)A*(B,)R(B,7)A; (B, {y; — m(X.8,)}?

Shunax( X X)ly; — m(XiB,)|* = O(T?),

we have sup,p || I2]] = O,(nT)o,(T~°), which ends the proof.

LEMMA 3:  Suppose the Assumptions (A1)-(A9). It holds that, for allg=1,...,G,

sup ||[{H, (89} 7/*(S,4(8,) — Sy(B,)}| = Op(0il (H)T?).

BE nT

Proof. From Lemma 2, it is enough to show that
IHE (89} *{S5(80) = Sy(BY}| = Op(Ai(H)T?).

The proof is almost the same as that of Lemma 3.1 in Wang (2011). Let @ = {¢j, j» }1<j1 jo<r
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denote the matrix IA%_I(B, ~%) — Rfl(ﬁ, ~%). Then,

*

S5(By) — S,(8,)

=SS SR BAY) - B HBA e AL B) AL B ) i, — m(z,B8,) )i,

i=1 t1=1t2=1

T T
~—1 -
=SSR (B,4") - R (B.A)} o
t1=1t2=1
x [Z AL B AL B AL (B + (@), B) — m(@),B,) ), |
Note that

[HZAif B,)A7(8,) AL (B,

] Zwma}m = 0O(n),

and
n 3 2
sup || D ALE(B,)An (B ) {m(x;,8) — m(x),B,) i,
ﬁeBnT i=1
n 3 2
= sup Z‘ AP (B AL (By)m({z, B, ) )z, (B) — By,
nT i=1

S swp 3 (85— B,) @i, (By — Bz, ma,

Similar to the proof of Lemma 2, we have makaKT{}A%il(B, ) =R (B,7°) = 0, (n=1/?)
from Assumption (A9) (ii). Then, we have supgeg , 11S5(8,) — EZ(BQ)H = O,(T?), which

proves the lemma.

The following Lemma is from Remark 1 in Xie and Yang (2003).

LEMMA 4: It holds that, for alli=1,...,n

7:8,) = Hi(8,) + Bi(B,) + &i(8B,),
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for Ei(ﬁg) = Bm (B,) + B[ (B,) and zi(ﬁg) = EE] (B,) —i—E?} (B,), where

(1]

B,'(8,) = X, diag[R A;V*(8,){m(X:8%) — m(X.8,) G (8,) X,
B(8,) = X[ A(B,)A(B,) R diag[m(X,8%) — m(X.8,)G(8,) X,

£(8,) = X[ diag[R™ A;*(8,) A (8%)e]GY (B,) X .

(2

and

(B,) = X! A:(B,)A*(B,) R diag[A}*(82)e] G (8,) X .

(2

Here, GEK](,B ) = diag(q ’m(ﬂ )y ,q’% (B,), for £ =1,2, where

¢ (8,) = [d" (042 (),  d(B,) = [a"(6:)] 2,

and

/1 . 1 a(g)(g) 2 (nzt) 12 o 1 a(3)(9it) l
7i By) = —5Taaapr oY + W 0(80) = =5 g™ ()

LEMMA 5:  Suppose the Assumptions (A1)-(A9). It holds that, for any A € RP and g =

1,...,G,

sup sup [T(Z5(8,) — T (8,)IM = Op({DAntl ()72 v 2y T2n).

g min
BEBnT [|Al|=1

Proof. By Lemma 4, it is sufficient to prove the following three results:

sup sup [AT[HE(B,) — H,(B,)A| = Op(I0atl2(H )2 v V2 1),
BeB,T ||A||=1
sup sup [AT[B}(B,) — B,(B,)Al = O,({Ani (H )/ v n ™2} T?n),
BEBLT [|A]|=1

and
sup sup [AT[E,(8,) — &, (BNl = Oy({Auhl” (H)TV2 v n =2} T?n).

BeB,T ||A]|=1
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We have

NTIH(8) ~ (BN =| 30 N XTA(B) AP B)R (B{EB.7) ~ R(B.7)

19Z =g
xR (8,7) A (85)A(85)
SIRB.7) = BB e dws (Y X7 X,

i:g)=g

which implies that supges . supyaj—1 A [H(8,)—H,(B)IAl = Op({ it (H )7V} T?n)

min

from Assumptions (A2) (i), (A7) and (A9) (ii). Next, we will verify

* 1 - —
sup sup |[AT[BI*(8,) — B (8,)A] = Op (Ol 2(H )72 v 0= T2n),
BEB,T |IA||=1
and
* Hl2l* - _
sup sup |[AT[BE(8,) — B (B,)A] = Op (Ol 2(H )72 v =Y T2n).
BeB, T [IAl|=1

We have from Cauchy-Schwarz inequality

AT[BI(8,) - BY(8,)A
= > ATx[diag[{R(8,7) ~ R '(B.7)}A;(8,)

x {m(X:8°) — m(X.8,)YIGI (B,) XA

| 3 ATXT N8, )diag X AR (B.7) - R (8,914, (8,)

x {m(X8y) — m(XB,)}

< D |ldiag[X MG (8,) XA

iigy=g

< [{R ' (B,7) = R '(B,7)} A2 (B,){m(X:8%) — m(X:B,)} -

We have

ATX] G (B,)diag? [ X, AGY (8,) XA < max 2] A2 max |¢'(8,)PAmax (X ] X)),

1<t<T 1<t<T
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and, by using (1), we have for 3 between ,62 and 3,,

{(m(X:B) —m(X8,)} AT P(B)R " (B.4) - R (B
x A28, {m(X:8)) — m(X,8,)}
=(8)— B,) X]AB)A(B)A; (B[R (BANR (B.,7) - R (8,7)
(B, )2A;(B,) Ai(B;) ABy) X (85 — B,)
SIR(B. %) = R(B. )3 A (X X) A (HO| | {H (89128, - BY|

Then, from Assumptions (A7) and (A9) (ii), we have

* —[1]*
sup sup [AT[BU(8,) - Bir (B
BrEBnr ||A]|=1

=n0,(T"*)0p({T A" (H )2 v T 1O (TN (H )72

min min

=0, ({ i (H )72V 2T\ 2 (H )2,

min min

. * 1]* —
which proves supges, , sup <1 AT [BL(8,)—B, " (8,)]Al = Op({Ail” (H )72y 12} 1)

since AL (H )7 — 0. Moreover, we have from Cauchy-Schwarz inequality

min

IAT[BEF(8,) — B (8,))A

o S ATXIAB) A B )R (B.) - (8]

X diag[m(XZﬂo) - m(XZ/B )]G?] (/69)
| > ATXTAB) A BHR (B - B (B1IGTB,)

iig)=g

X diag[Xi)\]{m(Xiﬁg) —m(Xi8,)}

< Y ldiag[X NG (B,){R(8,7) — R(B,7)}A!*(B,) Ai(B,) X Al

iig)=g

x |Im(X8y) — m(XB,)].
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We have

ATXTAB,)AB)R (B,7) - R (8,)G(8,)diag’ X AGP(3,)
< {R(8,9) - R "(B,7)}AY*(8,)A:(8,) XA
511?15%@ A|2 1212}{ |q ( g)|2||R_1(:377) - 1—271(18,7)“%)%&)(()(2-){1')’

and for B between 3, and ﬂg, we have
Im(X8y) — m(X.B,)|I =By — B,) X[ Ai(B,)A}(8;)Ai(B;) X:(By — By)
S (X X ) Ah, (HD)|{H ,(B)}* (B, — Bl -

Then, from Assumption (A7) and (A9) (ii) we have

% —[2]*
sup sup [AT[BP*(3,) — BV (8,)A
BEBnTH)\H 1

=n0,({T A" (H )72 v Tn2}) 0, (T2 0, (TN 302 (H )rt/2

min min

O, (A ) BT R ),

min max

. * 2] _
which proves supscs, , supyx—1 AT B (8,) =B, (BN = Op({Ail(H)r/2vn =12y Tn)
since A\_L (H )7 — 0. Lastly, we will verify
% —[1]* _
sup sup [AT[EW(B,) — € (B,)IA = Op({Anl2(H )72 v n Y2y T2),
BeB,T ||A||=1
and
* —[2]* _
sup sup |AT[ER(B,) — EX(B,)IN| = Oy (A2 (H )72 v 02} Tn).
BeBuT ||A]|=1

We have from Cauchy-Schwarz inequality

ATEN(B,) — X (8,
| 3 ATXTG(8,)ding XA{R T (B.7) - R(8,7)}A; (8, A% (8))e
irg)=g
< 3 IGY(B,)diag X NXA|l - [{R ' (B.9) - B (8.4} A7 2(8,) A (B)ei|
zgl =g

S max {||a AN (X XD R(B,7) = R(B,7)|r|lei].

iig)=g
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Then, from Assumption (A7) and (A9) (ii) we have we have

1]*

sup sup [AT[ENL(BL) — € T (BIA

BeB,T ||A||=1

=n0,(T")0,({T Ay (H )72 v T 20, (T')

min

ZOp({)\_-l/Q(H*)Tl/2 Vi n_l/Q}TQn),

min

. " —[1]* _
which proves supgep, . Sup|a1 [A " [EL] (,Bg)—g[] (BN = Op({ A VR H)rY2yn Y2 T,

g min

Moreover, we have from Cauchy-Schwarz inequality
ATIERH(8,) — €, (BN
= 3 ATXTAB) A BHER T (B,4) - R(8,)}dingl Al (B)e]GP(B,) XA

iig)=g
~— — /
<( X IR (B.y) - RBANAB,)AB)XAP)
(Y IldinglA?(8)e )G (8, x A1)
i:g0=g
SIR(B.7) ~ R(BA) e max (147 (Bl Pouas 3 X7 X0).

i:g)=g

Then, from Assumption (A7) and (A9) (ii) we have

—[2]*
sup sup |AT[EP(B,) — E27(B,)A
BeB,T ||)\|| 1

—0,({TA2(H" )72 v Tn~/*1)O, (nT)

min

=0,({( A2 (H )T v = V2 T),

min

. % —[2]* _
which proves supgep, , Sup|a—1 |A " [EF (,Bg)—g[g] (BNl = Op({ A, VECHT TV 2yn 12 ).

min

The following three lemmas are from Lemma A.1. (ii), Lemma A.2. (i), Lemma A.3. (ii)
in Xie and Yang (2003), respectively. These three lemmas are hold under the assumption

(AH) in Xie and Yang (2003), which is satisfied in our problem from Assumptions (Al).

LEMMA 6: Suppose Assumption (A1) and (A8) (i) hold. It holds that, for any X € RP
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andg=1,...,G,

sup sup |NT{H(8))} " H (B,){H,(B9)} /*X = 1] = 0,(1).
BEBur IN=1

LEMMA 7:  Suppose Assumptions (A1) and (A8) (i) hold. It holds that, for any X € RP

and g=1,...,G,

Sup sup IAN{H,(B9)} B (B,){H,(By)} /Al = 0,(1).

LEMMA 8: Suppose Assumptions (A1) and (A8) (ii) hold. It holds that, for any A € RP

and g=1,...,G,

S sup H(5))) 2 (8, T ()X = 0,(1)

The proof is based on that of Theorem 3.6 in Wang (2011). We will verify the following
condition: for any € > 0, there exists a constant C' > 0 such that for all n and T sufficiently

large,

P( sw (B~ B9)7S,(8,) <0)>1-c

BEB, 7 ET
where B,y = {8 : max,—,__¢ ||{ﬁ;(ﬁg)}1/g(,@g—ﬁg)\\ = O/} and T ={v=(g1,...,9n) :
ntY  1{gi # ¢} = 0,(T°) for all § > 0}. This is a sufficient condition to ensure the
existence of a sequence of roots Bg of the equation Sy(83,) = 0 for g = 1,..., G such that
B € Byr for v € I. This is because from Assumption (A5) and (A7), we can estimate each
B; consistently by solving S;(83;) = 0, and then, P(y ¢ I') = 0,(1) from Lemma 1.

From Taylor expansion, we can write

n

(B, — B S4(B,) =B, — B S,(BY) — (B, — B> 1{g: = 9}2:(8;,)(B,, — BY)

=1

E[l + [2,

where 3, lies between 3, and 62 for i =1,...,n. Next, we write

*

L= (B, —By)"8,(8Y) + (B, — By) {S,(By) — 5,(Bg)} = L1 + L.
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For ¢ =1,..., p, denote e, € RP with ¢th element equal to 1 and the others equal to 0. Then,

we have

E{el {H,(82)} /*S. (B}
—e/ {H,(B)} 23" 1{¢? = 1 X[ Ai(BY A (BOR (81" )R'R ' (8°,7")

i=1
x A(8))8:(8) X {H,(8))} e
Qe RR(6°.47)).
Thus, we can bound |I11| by
Sup [In| < IHH,(B)Y*(8, — BYI| - [{H,(Bg)} S, (BYI < C.
From the Lemma 2 and 3, we have

sup |Ta| <|{H,(B9)}(8, — Byl - I{H (8} *{S,(8y) — Sy (B}

ﬁeBnT

<20, (A (H)T?).

min

Since 7-V/2\_/2(H")T? — 0 from Assumption (A3), SUPgep, . [112| = 0p(7). Hence, we have

min

SUpgep, . | 11| < O7. In what follows, we will evaluate /5. It can be written as

n

L=—8,-B8)" Y g =9'2:(8,)B, — B

— (B, - BN g =g}H2:8;) — 2:8;)}B,, — BY)

i=1

=151 + Is.

For ¢! = ¢gi =g, By, lies between B, and ,32, and then we write 3, = B for such 4. Hence,

we can write

In=—(8,-BN"7,8:)8, — B

— (B, = BN (1{g: =g} — 1{g! = 9})2:(8;)(B,, — BY)

=1

=111 + Iro.
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For I511, we write

Ly =— (8, — B TH,(B)(B, — B — (B, — B {2,(B;) — H,(B,)}B, — BY)

=111 + Doio-

For I5111, we can write

L = — (B, — By) "H,(89)(B, — BY)
— (8, — B)T{H, (B} [{H,(8))} ™/ "H, (8, {H,(8)} " ~ 1,
x {H (BN)}'*(8, — BY)

=I111 + Laiie.

For B € B, we have Iy 11, = —C?7. Moreover, for g0 = g; = g, B, = B, is contained in a

local neighborhood of ,32. Then, for Is;112, we have from Lemma 6,

i ([CEL 3001 V7R 95) (T 9~ 1] )|

|I21112‘ < sup max{
IBEBnT

N ([{HL, (80} H (B (80 - 1,] )|}
< |[{H,(B)}'*(8, — ByII

=o(1)C?r,

which is dominated by Is1111. Hence, for 3 € B,r we have Iy;1; = —C?7. Next, we verify

Iy10. For ¢) = g; = g, we have from Lemma 4, 7 and 8

Ioiz| =(B, — BY) ' {B,(8;) + €,(B,)}(B, — BY)]

< sup {Duax ({H, (B2} 2B, (B2 {H, (B2)}1/?)

+ Aax({Hy (Bg)} € (B){H ,(Bg)} )} I{H (B} (8B, — Byl

=0(1)C?r,
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which is dominated by I5;1;. Hence, for B € B,r we have Iy, = —C?7. Next, we verify I5,.

Lozl <[(8, = B> (1gi = 9} = Uo? = gD H(B,)(B,, — BY)

(8, BT (1o = 9} ~ 1ol = 9))B(B;)(8,, — B)
(8, = BT (Mo = 0} — 1ol = 9))E(B;)(B,, ~ B)

=1I9191 + I2192 + I2193.

From Cauchy-Schwarz inequality, 8 € B, we have

| 15191 | <)\n1111{2( )H{H (180)}1/2(,3 BO | Z 1{g; # 9, }n{max sup )‘maX(Hi(Bgi))}

<nﬂ

<C)\;1111{2( H)r\/? (n Z 1{g; # g; })n{max sup )\max(ﬁi(ﬁgi))}.

1<i<n
1=1 BeB

From Assupmtions (A1) and (A6), for i = 1,...,n we have

max{ Amax (Hi(8,,))} S i max, [0 (6 (B, ) {1 (285, } ) Amax (X X i) = Op(T),

for 3, between 620 and 3,,, which implies that

sup | Inor| = CALLP(H )7 20 To,(T~°) = 0,(7).

min
IBEBTLT 7’76F

Similarly, Cauchy-Schwarz inequality we have

sup || KON E )0 Zl{gﬁégf})

=1

|7}

]
xn[{lrggxztelpllB (8y,)

52
FH {ppaxsup [1B;(8,,)



Supporting Information for “Grouped GEE for longitudinal data”
It is noted that we have from Cauchy-Schwarz inequality
B '
{Bi (Bg,)}jr
=e] X diag[R ' (8,7)A; (8, {m(X:B8Y) — m(X.8,) GV (B,) X ey

s (XT X A (diag[R - (8,7) A7 (8, {m(Xi8) — m(XiB,)}) Amax (G (B,,))

N (XT X)) max{Z{R (8.7 b (B, (@ B) — m(z}B,)}}

1<k<T

X Aux(G1(8,,))
=0,(T?).
Similarly {E?} (B,,)}ik = Op(T?), then we have
sup  |Ia120] = )\_-1/2(H*)Tl/2n0p(T_5)nT5/2 = 0,(T).

min
IBGBHT»'YGF

Similarly, we have

sup |12123| <O)\n1111{2(H ) 12 < Z 1{91 7& g; }>

/BGBnT i=1

g%,

Fil.

xmgyﬁﬁmw '8,

It is noted that we have

E[IE"(8,,)I2]

T
S Ele/E(8,) €8, el

1

~
I

p"qﬂ

Elel A (B3) A48, R (8,7)ding| X e G (8,,) X

~
Il

1

x X[ G (B)diag | X e R ' (B,7)A; " (8,) A" (BY)e]

<

E

T T 2
M X X),_ moce ol (B,)], e |

~
Il

1

X max{ max A;t1<,39i)Ait(162?)}E[€iT€i]

BEB “1<i<n, 1<t<T

:O<T3)7

which implies that ||§£H (B,,)||lp = O,(T%?). Similarly ||E£-2] (B, )|lF = O,(T%?), then we
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have

sup  |lag03] = )\_1/2(H*)7'1/271013(T_(S)nT?’/2 = 0, (7).

min
IBGB7LT »'YGF

Thus, I5191, lo122 and 5193 are dominated by Iy for 3 € B, and «v € I'. Hence I, = —C?r

for B € B,y and v € I'. Lastly, we verify Is5. We can write

n

Ly=—(8,- 8" Z g = g}1{g: = 9)H{2:(B,) — 2:(8;)}(B,, — BY)

— (B, = BN g = g}1{g: # o' H2:(B;,) — 2:8;)}(B,, — B))

=1

=101 + I29.

For Iy, we can write, from Lemma 5,

o] < sup max{|Auax(Z:(85,) = Z,4(B,))]: [Muin( Z4(B5,) — Z4(8B,))|}

BEBnT

X A (HD){H, (B} (B, — Byl

et 3

=0,({ A (H )72 v 2} T20) O

min min

*

(HQ)T.

Since )\min(ﬁ*) is at least of order larger than O,(nT), and from definition, we have 7 =

sUPges 5 Amax ({R(8,7)} ' RY) < supgep 5 Amax ({R(B,7)} ) Amax(R”) < O,(T) form As-
sumption (A5), the order of 7AZ2 (H )n? is at most O,(T~'). Then, from Assumption (A3)

min

we have supgep, . [l221| = T0p(1). As for Iy, we have

| Lno| <t (HD)|[{H,(B9) Y28, — BO)|

X Z Hg =g} # 9} - 112:(8,) — 2:(8;)||r - 18, — Boll
i—1

n

QO ( Yo 1{e # 9}) Y 1124(8;) - 74(8;)

i=1

7+ |18y, — Byll.

It is noted that he order of |2;(8,,) — Z:(8,,)||F is at most O,(T). Then, form Lemma
1, supges, ,~er [222| = 0,(T~°), which implies that Iy, is dominated by I5;. Thus, (B, —
,BS)TSQ(,BQ) on 3 € B,r and v € I is asymptotically dominated in probability by I+ I =

Ct — C?r, which is negative for C' large enough, which proves the first part of the Theorem.
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Next, we show the second part of the theorem. We have

P( max [5:(B) - of| > 0)

1<i<

<G max P( ¢ Bur) +n max P(B € Bur, 5:(B) # g?).

1<g<G 1<i<n

The order of the first term is o(1) from the first part of the Theorem. We have supgcp, .. 1{gi(8) #

9} <25 Ziy. Then,

max P(B, € Br,G(B) # of ) = max E[1{B, € B.r}1(5 # of}]

1<i<n

1<z<n

< max F [1{6 € B.r} i Z'g}
g=1

P(Ziy=1)= O(Tﬂ;)a

MQ

< max
1<i<n !

g
which proves the theorem.

S.3. Proof of Theorem 2

To show Theorem 2, we need to show the next lemmas.
Let B , denote a root of g;(ﬁg) = 0. The next result shows that the grouped GEE estimator

and the infeasible estimator with known population groups are asymptotically equivalent.

LEMMA 9:  Suppose the Assumptions (A1)-(A9) hold. As n and T tend to infinity such

that n/T" — 0 for some v > 0, we have ,(A‘i’g = Bg +0,(1) forg=1,...,G.

Proof. We have

sup [54(8,) — S,(8,)|

EEBnT 7’761—‘

< sup [1S,(8,) = Sy(B,)l| +  sup  [[S,(B,) — S, (B,)ll

BEBLT BeB,r,yel’

Then, we have supgeg, , ~er ||S¢(B,) — g;(ﬁ;;)” = O,(T?) from Lemmas 2 and 3. Since

Bg € B,r for v € I' from Theorem 1 and Bg € B,y from Theorem 2 in Xie and Yang (2003),
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this implies

sup|(B, — B,) {S,(B,) — S, (B} = (B, — B,)S,(B,)| = 0,(T?).

vyel

From Taylor expansion, for 3 between Bg and Bg we have

* N —*

S.(B,) =5,(8,) — 2:(8,) (B, - B,)
=—H,(83,)(B, - B,) —{7,(8;) — H,(B;)}(B, — B,).

Then, we have, from Lemmas 6 - 8,

|(Bg B fég)T{Sg(Eg) - g;(Bg)H :<Bg - Bg)THZ(ﬁz))(Eg - 5g) + Op(l).
Hence, we have

sup _inf Nuin(H,(8))11B, = B,lI” < O,(T%) + 0, (1),
’YEFIBGB'ILT

which implies ||,@g - Z’)’QH = 0,(1), since the order of )\mm(ﬁz(,@)) is at least O,(nT’). The

Lemma follows from Lemma 1.

Next lemma is almost the same with Lemma 2 in Xie and Yang (2003).

LEMMA 10: Suppose the Assumptions (A1)-(A9) hold. Moreover, suppose that, for all
g =1,...,G, there exists a constant ¢ such that (¢*T)'*¢~v* — 0 as n — oo. Moreover,
suppose the marginal distribution of each observation has a density of the form from (2.1)

in the main text. Then, when n — oo, we have
{MZ(ﬂS)}‘1/2§;(ﬂ2) — N(0,1I,) in distribution.

Proof. For any px1 vector A such that ||| = 1, let )\T{M;(ﬂg)}”p?;(ﬂg) =5 Znti,

iig)=g

where Z,7; = }\T{M;(Bg)}_l/QXiTAi(ﬁg)A}/Q(,BS)T?,Z«_I(60,'yo)si. To establish the asymp-

(3

totic normality, it suffices to check the Lindeberg condition for X* {M;(,@g)}_l/ 2?; (ﬂg), that

is, for any € > 0,

Z E(Z2p 1 {| Zuri] > €}] = 0,
i:g0=g

which is shown in the proof of Lemma 2 in Xie and Yang (2003).
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We will show
{M;(ﬁg)}_lﬂﬁz(ﬂg)(,@g — ,32) — N(0,1I,) in distribution.

The theorem follows from Lemma 9.

For B3] € By between B, and 8%, from Theorem 1, we have
{H,(8))}'*5,(8;)
—— {H,(B))}"(8, - BY) + [{H,(B,)}* — (H,(8)}"] (B, - 8Y)
— {8y 27,8, (H (83} /2 = L] {H(8)} (B, - 8).
From Lemmas 4 and 6 - 8, the second term in the right hand side of the above equation

is 0,(1), which implies that {M(82)}/2S(8Y) and {M;(ﬁg)}‘1/2ﬁ;(ﬁ2)([§g — 3y are

g

asymptotically identically distributed. Hence, the theorem follows from Lemma 10.

S.4. Property of R (3,7)

In this section, we denote the estimated unstructured working correlation matrix as IA%*(ﬁ ) =

R*(a(B,7),3,~) for a(B,~) given in (2.4) in the main text. Then, it follows that

ZA‘” VAL (B RO AL (By) A (8,,)

+ ZA—”Q (X iBi) — m(X8,) Hm(X8)) —m(XiB,)} A, (8,,).

The next lemma shows that R (3, ) satisfies Assumption (A5) (ii).
LEMMA 11:  Suppose Assumptions (A1)-(A8) hold. It holds that Apax({R (8%, 7)} 2R°) =
O,(1) for any ~.

Proof. Since the eigenvalues of R (8°,v)(R%)~"/2 and (R")"V*R"(8°,~)(R’)~ /4 are the

same, we will show that Api ((R%) VAR (8°,v)(R")~/4) is bounded away from zero. It can
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be written as

Auin(RY)"/1R(B°,~)(R%) ™)

2)\111111( 1/4 ZA—1/2 1/2(,6 )R0A1/2(ﬁS?)A;l/z(Bgl)(Ro)_l/Ll)
=1

n

+ A ((R) I/Q;ZA—W B {m(X8) — m(X:8)}

=1

X m(XBy) — m(X i)} AT () (R,

Since the smallest eigenvalue does not diverge to infinity, it is enough to show that the first
term of the right-hand side of the above inequality is bounded away from zero. Then, we
have

n

Amin((RO)1/4%ZAil/2( gz) 1/z(ﬁo )RO 1/2<ﬁo> 1/2( gi)(Ro)q/z)

i=1
%iAminUR“)‘”“AZ V(85 AL (B RO AV (Bl AT (85 (RY) )

>— ZAM( )ATHB)) AL (B (R) )

Z min {A5"(83) Ai(B%) Pl (R”) > 0,

1<t<T

where the last inequality follows from Assumption (A5) (i).

The next lemma shows that IA%*(B, ~) satisfies Assumption (A9) (i).

LEMMA 12:  Under Assumptions (A1)-(A8), it holds that for any -,

sup max (R (8,7) — R (8°,9)}u = O, (0t (H)r'7?).

BeB, p 1<kIST i
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Proof. For any =, we can write

R (B,v)- R (87)
= Z AT(B, )y, — m(X B, Hy — m(X.8,)} A8,

B ZA—1/2 50 {yl (Xi62i>}{yi — m(Xiﬂgi)}TAi—lﬂ(ﬂgi)
= Z{A—W )= AT (85 Hy, - m(X.8,,)}

x {y; —m(X:B,)} LA 2(8,) — ATV(B))}
+ = Z{A 2(8,) — AT (B My — m(Xi8,) Hy: — m(Xi8,)} AT 2(80)

- Z AT B0y, — m(XB,) Hy: — m(X:B8,)} 1A (8,,) — 47189}
LS A [ty - (X8, - (X8,

—{y, — m(X:80) Hy, — m(X.80)} | A72(8Y)

4
>
j=1

From Taylor expansion, for ,3; between B, and ng we have

1 * - *
= — S (@B, )a" (85} *u (85,2, (By, — B,).
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Then, the (k,1)-element of I; can be written as

—Z{A‘”‘Z o) — AR BOHAL A8, — AL}

X {yzk - m(w;ll—fﬁgz)}{yll - m('lr;ll—/@gl)}
=—Z{a" (33 )" (2 B0 )}V (.8 ) (B, — B

x {a" (3, )a" (x;80)} "/ (w] BL,)w (B, — B,
< A28,y — m(@].8,,) ya — m(zaB,,)} A, (8,,)
- /
<5328, — 89wl (B, — By~ m(}8,)y)

=1

- /
(23208, - g Tmal (6, - B - miais, )

=1

T 2
<{1r£1ta>% )‘max mltmzt } Z ||/6gz - IBgZH {ylk - (mzkﬁgl)} )

where the second last inequality follows from Cauchy-Schwarz inequality. Since we have for
all t = 1,..., T, Amax(ae)y) = Op(1) and 237" {y — m(x8,,)}* = Op(1), this implies
that the order of {I;}y,; is Op()\;liln(ﬁ*)r) for B € B,r. Similarly, the order of {I5};; and

{Is} are O, (A (H")7/2) for B € Byr. For I, we can write

I = ;ZA‘W(B Him(Xi5) = m(X.8,) Hy, - m(X.65)} A7 (8))

ATV )y~ m(XaB) Hm (X8 — m(Xi8,)) A ()
ST ATE0 ) n(X.8) — m(X 8, ) m(X.B) — m(X.B,)) A8

=1

3
= Z I4
j=1

By using (1) for B, between 3, and 521-7 the (k,[)-element of I4; can be written as from
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Cauchy-Schwarz inequality,
—ZA—W Bo) Ay (By) {m(xlBy) — m(xlBy) Hun — m(wi5;,)}
:_ZA;,:ﬂ B )AL (85) 0 Aw (B8 ) (2335, )ik (By, — By, {yn — m(wi8,,)}

<(; D8~ B,) w8, - 8,))"

< (= ZAm AT B A8, (ol (w8 Y — () (o — miaiA)})

—=%

which implies that the order of {Ij; by is Op(AL /> (H )7/2) for B8 € Byy. Similarly, the order

min

of {Iso}r and {Iy3} are Op(/\_-l/Q(ﬁ*)Tl/Q) and O,(\i

min

H)7), respectively for 8 € Bur,

min (

which proves the lemma.

The next lemma shows that IA%*(B, ~) satisfies Assumption (A9) (ii).

LEMMA 13:  Under Assumptions (A1)-(A8), it holds that for any -,

sup max [{R (8,7) — R (B,7)}ral = Op(n™ V2 v A\ (HT(8%)72),

BEB,T 1<k,ILT

Proof. From Lemma 12, it is enough to show that

max {R (8°,7) — R (8°,7)}u = O,(n"?).

1<k JILT

We can write
R (8°~)-R(8°,7)
z A7 {{yz m(X B9 Hy: — m(X.8%)} T — 5} A4, (85
+2 Z A0 {m(XB) — m(XiBy ) Hy: — m(XiB)} AT (8])
b Z A8y, — m(XB9) Hm(XBY) — m(X8),)} T A 2(85,)

=0+ 1, + Is.
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For o5 = {2 }r1, the (k,l)-element of I; can be written as

{hla = %Z AJJ/Q(BSZM;”Q( o)y — m(:v?;gﬁgg)}{ya - m(wlﬁgg)} — Okl
=1

Then, it is obvious E[{I;}] = 0 and

Var({11 } ) :% Z Ayt (ﬁgi)Aﬁl(Bgi)Aik(ﬁgg)Au(BSg)Var(emeu)

i=1
1~ _
< D0 AR (B AT (B Al By Au(BY) (B BT = 0,1 /),
i=1
where the last equality follows from Assumptions (A1) and (A4). Then, this implies that the
order of the (k,[)-element of I, is O,(n~%/2). Similarly, both of the (k,[)-elements of I, and

I3 are O,(n~%?), which implies the lemma.

The next lemma shows that 1/%*(6, ~) satisfies Assumption (A9) (iii).

LEMMA 14:  Under Assumptions (A1)-(A8), it holds that for any B € B, v and ~,,

whose only ith component differs from that of =,

max [{R(8,7..) — R (8,7)}ul = 0,(1/n).

1<k, I<T

Proof. The lemma immediately holds since we can write

{R'(8,7:.) — R (B,7)}u
= LA 8,0) A0 (B, T — (B, e — (e B,))
= A58, ) AT (B i — M@ By ) Hun — (3 B,:)}
which is of order O,(1/n).

The next lemma shows that ﬁ*(ﬁ, ~) satisfies Assumption (A9) (iv).

LEMMA 15:  Under Assumptions (A1)-(A8), it holds that for any B € B, any vy satisfying
SUPgep, M ' 2iy Hoi # 67} = 0,(T7°) and all § > 0,

max [{R(8,7) = R (8,7°)}ul = 0,(T).

1<k,I<T
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Proof. From Cauchy-Schwarz inequality, we can write
{R(8,7) — R (B.4")}u
= Z Uos # g7 A5 (8,) 45 Byl — m(@ 8, Hya — m(@;8,))

- Aﬁcl/Q(ﬁgg)Aﬁl/2(ﬁgg){yik — m(z;3.B8y0) Hyu — m(wz—'lr/Bg?>}}

< (% zn: 1{g; # 9?}>1/2

i=1

< (5 S {AR8,) A7 28, (o — mlwB,) o — m(w]B,))

1=1
) ) /
— A8 ) AT By i~ mlw B o — mleiB ) )

Since we have
—23@%“ AT (B i — mlahB,) un — m(a8,,))

ﬂ%”wm&ﬂmmﬂw—m@mmﬂw—mmmm§iﬁMm

the lemma follows from Lemma 1.

S.5. Additional numerical results
S.5.1 Details of competing methods in simulation studies

We here provide details of competing methods used in the simulation study in Section 4.

- (RC; random coefficient model) Fit the following logistic random coefficient model:

yir ~ Ber(pi), logit(pu) = 18,  B; ~ N(By, V).
The model is fitted by using the R package “lme4” (Bates et al., 2016).

- (GMM; growth mixture model) Fit the following growth mixture model:

L
yzt|$zt ZWBG Yit; T ztﬂf) Zﬂ—f - 17
=1
where Be(y;; 7, 3,) denotes the Bernoulh distribution with success probability being 1/{1+

exp(—z,,3,)}, and L is set to the same number of groups used in the GGEE method. The
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model parameters are estimated via an EM algorithm. The subject-specific estimates of
coefficients are given by EZ = ZZL:1 @535, where p;, is the posterior probability that the
1th subject is classified to the ¢th group.

- (PWP; pair-wise penalization method) Consider the subject-wise logistic regression, y;; ~
Ber(p;;) with logit(p;) = }3;, and estimate B3; by maximizing the following objective

function:

n T p

Z Z{yit log pit + (1 — yit) log(1 — pir) } — )\Z Z |Bir. — Bixl,

i=1 t=1 i~j k=1

where 7 ~ j denotes contingency between ¢th and jth subjects and A is a tuning parameter.
Based on the output of RC, we first computed the pair-wise difference of estimated
regression coefficients and obtained a minimum spanning tree over n subjects. Then, pairs
of connected subjects in the minimum spanning tree are regarded as “adjacent” in the above
penalty term. The above objective function is easily optimized, and A can be selected via
cross-validation by using the R package “glmnet” (Friedman et al., 2010). This method
can be regarded as an alternative and scalable version of the pair-wise penalization method

by Zhu et al. (2018).

S.5.2 Performance of confidence intervals

We carry out simulation studies to investigate the performance of the Wald-type confidence
intervals based on the estimated variance-covariance matrices using the form given in Theo-
rem 2 (plug-in method) and the clustered bootstrap. We adopted the same data generating
process used in the first simulation study in Section 4. We estimate variance-covariance ma-
trices of B, for g = 1,2, 3, based on the plug-in and clustered bootstrap (with 100 bootstrap
samples) methods, and then obtain Wald-type 95% confidence intervals, denoted by Cl for
k =1,...,p. The performance of the intervals are evaluated by coverage probability (CP),
(pG)~! Zngl S r_ By € Cly), and average length (AL), (pG)~! Zngl >, |CLy|, which

are averaged over 500 Monte Carlo replications. The results are shown in Table 1. It shows
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that the plug-in method tends to exhibits under-coverage probability when 7' is small. On
the other hand, the bootstrap approach produces desirable confidence intervals with coverage
probability close to the nominal level and longer interval lengths than those of the plug-in

method.

[Table 1 about here.]

S.5.3 Additional results in Section 5

In Figure 1, we provided the CVA values for candidate values of G. It shows that the CVA

value basically decreases from G = 2 and attains the minimum value at G = 8.

[Figure 1 about here.|
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unstructured (US) working correlation matrices, averaged over 500 Monte Carlo replications.

Table 1

Coverage probability (CP) and average length (AL) of 95% confidence intervals of group-specific parameters based on
the plug-in and clustered bootstrap methods under exchangeable correlation (EX), first-order autoregressive (AR) and

Plug-in Bootstrap
(n,T) EX AR US EX AR US
(180, 10) CP 90.7 87.3 884 95.3 93.8 95.3
AL 0.67 0.66 0.65 095 1.04 0.95
(180, 20) CP 929 90.4 88.0 95.2 94.6 96.5
AL 0.56 0.56 0.55 0.68 0.74 1.08
(270, 10) CP 90.5 86.0 88.5 94.7 924 945
AL 0.55 0.54 0.54 0.71 0.78 0.73
(270, 20) CP 93.1 91.1 89.7 954 95.1 95.7
AL 0.46 0.46 0.46 0.54 0.60 0.66
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